Каковы функции лизосом

Каковы функции лизосом

Лизосома

Схема, показывающая цитоплазму, вместе с её компонентами (или органеллами), в типичной животной клетке. Органеллы:
(1) Ядрышко
(2) Ядро
(3) Рибосома (маленькие точки)
(4) Везикула
(5) Шероховатый эндоплазматический ретикулум (ER)
(6) Аппарат Гольджи
(7) Цитоскелет
(8) Гладкий эндоплазматический ретикулум
(9) Митохондрия
(10) Вакуоль
(11) Цитоплазма
(12) Лизосома
(13) Центриоль и Центросома Эндомембранная система эукариотической клетки. Электронная микрофотография клетки HeLa, на которой видны компоненты эндоцитозного пути. Лизосома отмечена буквой «L», ранняя эндосома — буквой «Е», поздняя эндосома — буквой «М».

Лизосо́ма (от греч. λύσις — разложение и σώμα — тело) — окружённая мембраной клеточная органелла, в полости которой поддерживается кислая среда и находится множество растворимых гидролитических ферментов. Лизосома отвечает за внутриклеточное переваривание макромолекул, в том числе при аутофагии; лизосома способна к секреции своего содержимого в процессе лизосомного экзоцитоза; также лизосома участвует в некоторых внутриклеточных сигнальных путях, связанных с метаболизмом и ростом клетки.

Лизосома является одним из видов везикул и относится к эндомембранной системе клетки. Разные виды лизосом могут рассматриваться как отдельные клеточные компартменты.

Лизосомы были открыты в 1955 году бельгийским биохимиком Кристианом де Дювом. Лизосомы есть во всех клетках млекопитающих, за исключением эритроцитов. У растений к лизосомам по способу образования, а отчасти и по функциям близки вакуоли. Лизосомы есть также у большинства протистов (как с фаготрофным, так и с осмотрофным типом питания) и у грибов. Таким образом, наличие лизосом характерно для клеток всех эукариот. У прокариот лизосомы отсутствуют, так как у них отсутствует фагоцитоз и нет внутриклеточного пищеварения.

С нарушением функций лизосом связан ряд наследственных заболеваний у человека, называемых лизосомными болезнями накопления.

История открытия

В 1949—1952 годах биохимик Кристиан де Дюв и его студенты, изучавшие действие инсулина в клетках печени крыс, случайно обнаружили неожиданное различие в активности кислой фосфатазы в зависимости от способа выделения. Кислая фосфатаза использовалась ими в качестве стандарта, основным предметом их изучения был фермент глюкозо-6-фосфатаза, вовлечённый в метаболизм инсулина. В ходе экспериментов выяснилось, что при фракционировании клеточного содержимого на центрифуге кислая фосфатаза была ассоциирована с микросомальной фракцией, но проявляла только десятую часть активности в сравнении с простым клеточным экстрактом, причём после нескольких дней хранения микросомальной фракции в холодильнике активность кислой фосфатазы возрастала. При обнаружении этого феномена первым объяснением было то, что произошла какая-то техническая ошибка. Однако повторение эксперимента неизменно воспроизводило первоначальную картину. Это позволило предположить существование неких окружённых мембраной клеточных частиц, которые содержат внутри себя фермент. С 1952 по 1955 год было открыто ещё несколько кислых гидролаз, связанных с микросомальной фракцией. В 1955 году, который считается годом открытия лизосом, К. де Дюв предложил название «лизосома» для клеточной органеллы, которая окружена мембраной, внутри которой поддерживается низкий pH и внутри которой находится ряд ферментов, оптимально работающих в кислой среде. В том же 1955 году американский цитолог Алекс Новиков (англ.)русск. из Вермонтского университета США, блестяще владевший техникой микроскопии, посетил лабораторию К. де Дюве и смог получить первые электронные фотографии этих органелл, используя препарат частично очищенных лизосом. Позднее в 1961 году Алекс Новиков с помощью гистохимического выявления кислой фосфатазы и электронной микроскопии подтвердил локализацию этого фермента в лизосомах. В 1963 году бельгийский биохимик Генри Хэрс, ранее работавший в группе К. де Дюве, обнаружил недостаточность лизосомного фермента α-глюкозидазы у пациентов с болезнью Помпе и высказал предположение о связи других генетических заболеваний с нарушением работы лизосом. В настоящее время более 50 наследственных заболеваний связывают с лизосомной недостаточностью.

В 1974 году за свой вклад в раскрытие структурной и функциональной организации клетки К. де Дюв был удостоен Нобелевской премией по медицине.

Признаки лизосом

Лизосомы являются гетерогенными по форме, размеру, ультраструктурным и цитохимическим особенностям. В клетках животных размер лизосом составляет обычно менее 1 мкм, хотя в некоторых типах клеток, например, в макрофагах, размер лизосом может превышать несколько микрон. Лизосомы, как правило, имеют сферическую, овальную, иногда тубулярную форму. Число лизосом варьирует от одной (крупная вакуоль во многих клетках растений и грибов) до нескольких сотен или тысяч (в клетках животных). Лизосомы у животных обычно составляют не более 5 % внутриклеточного объёма.

Один из признаков лизосом — наличие в них ряда ферментов (кислых гидролаз), способных расщеплять белки, углеводы, липиды и нуклеиновые кислоты. К числу ферментов лизосом относятся катепсины (тканевые протеазы), кислая рибонуклеаза, фосфолипаза и др. Кроме того, в лизосомах присутствуют ферменты, которые способны отщеплять от органических молекул сульфатные (сульфатазы) или фосфатные (кислая фосфатаза) группы. Всего полость лизосомы содержит около 60 растворимых кислых гидролитических ферментов.

Для лизосом характерна кислая реакция внутренней среды, которая обеспечивает оптимум работы лизосомных гидролаз. Обычно pH в лизосомах составляет около 4,5-5, то есть концентрация протонов в них на два порядка выше, чем в цитоплазме. Это обеспечивается активным транспортом протонов, который осуществляет встроенный в мембраны лизосом белок-насос протонная АТФаза. Помимо протонного насоса в мембрану лизосом встроены белки-переносчики для транспорта в цитоплазму продуктов гидролиза макромолекул: аминокислот, сахаров, нуклеотидов, липидов.

Высокая активность кислой фосфатазы ранее использовалась как один из маркеров лизосом. В настоящее время более надежным маркером считается присутствие специфических мембранных гликопротеидов — LAMP1 и LAMP2. Они присутствуют на мембране лизосом и поздних эндосом, но отсутствуют на мембранах других компартментов вакуома.

Образование лизосом и их типы

Лизосомы формируются из пузырьков (везикул), отделяющихся от аппарата Гольджи, и пузырьков (эндосом), в которые попадают вещества при эндоцитозе. В образовании аутолизосом (аутофагосом) принимают участие мембраны эндоплазматического ретикулума. Все белки лизосом синтезируются на «сидячих» рибосомах на внешней стороне мембран эндоплазматического ретикулума и затем проходят через его полость и через аппарат Гольджи.

Общепринятой классификации и номенклатуры для разных стадий созревания и типов лизосом нет. Различают первичные и вторичные лизосомы. Первые образуются в области аппарата Гольджи, в них находятся ферменты в неактивном состоянии, вторые же содержат активные ферменты. Обычно ферменты лизосом активируются при понижении рН. Среди лизосом можно также выделить гетеролизосомы (переваривающие материал, поступающий в клетку извне — путём фаго- или пиноцитоза) и аутолизосомы (разрушающие собственные белки или органоиды клетки). Наиболее широко используется следующая классификация лизосом и связанных с ними компартментов:

  1. Ранняя эндосома — в неё поступают эндоцитозные (пиноцитозные) пузырьки. Из ранней эндосомы рецепторы, отдавшие (из-за пониженного рН) свой груз, возвращаются на наружную мембрану.
  2. Поздняя эндосома — в неё из ранней эндосомы поступают пузырьки с материалом, поглощённом при пиноцитозе, и пузырьки из аппарата Гольджи с гидролазами. Рецепторы маннозо-6-фосфата возвращаются из поздней эндосомы в аппарат Гольджи.
  3. Лизосома — в неё из поздней эндосомы поступают пузырьки со смесью гидролаз и перевариваемого материала.
  4. Фагосома — в неё попадают более крупные частицы (бактерии и т. п.), поглощённые путём фагоцитоза. Фагосомы обычно сливаются с лизосомой.
  5. Аутофагосома — окружённый двумя мембранами участок цитоплазмы, обычно включающий какие-либо органоиды и образующийся при макроаутофагии. Сливается с лизосомой.
  6. Мультивезикулярные тельца — обычно окружены одинарной мембраной, содержат внутри более мелкие окружённые одинарной мембраной пузырьки. Образуются в результате процесса, напоминающего микроаутофагию (см. ниже), но содержат материал, полученный извне. В мелких пузырьках обычно остаются и затем подвергаются деградации рецепторы наружной мембраны (например, рецепторы эпидермального фактора роста). По стадии формирования соответствуют ранней эндосоме. Описано образование мультивезикулярных телец, окруженных двумя мембранами, путём отпочковывания от ядерной оболочки.
  7. Остаточные тельца (телолизосомы) — пузырьки, содержащие непереваренный материал (в частности, липофусцин). В нормальных клетках сливаются с наружной мембраной и путём экзоцитоза покидают клетку. При старении или патологии накапливаются.

Внутриклеточное пищеварение и участие в обмене веществ

У многих протистов и у животных, имеющих внутриклеточное пищеварение, лизосомы участвуют в переваривании пищи, захваченной путём эндоцитоза. При этом лизосомы сливаются с пищеварительными вакуолями. У протистов непереваренные остатки пищи обычно удаляются из клетки при слиянии пищеварительной вакуоли с наружной мембраной.

Многие клетки животных, у которых преобладает полостное пищеварение (например, хордовые) получают питательные вещества из межклеточной жидкости или плазмы крови с помощью пиноцитоза. Эти вещества также вовлекаются в обмен веществ клетки после их переваривания в лизосомах. Хорошо изученный пример такого участия лизосом в обмене веществ — получение клетками холестерина. Холестерин, приносимый кровью в виде ЛПНП, поступает внутрь пиноцитозных везикул после соединения ЛПНП с рецепторами ЛПНП на мембране. Рецепторы возвращаются к мембране из ранней эндосомы, а ЛПНП поступают в лизосомы. После этого ЛПНП перевариваются, а высвободившийся холестерин через мембрану лизосом поступает в цитоплазму.

Косвенно лизосомы участвуют в обмене, обеспечивая десенсибилизацию клеток к воздействию гормонов. При длительном действии гормона на клетку часть рецепторов, связавших гормон, поступают в эндосомы и затем деградируют внутри лизосом. Снижение числа рецепторов понижает чувствительность клетки к гормону.

Аутофагия

Основная статья: Аутофагия

Обычно различают два типа аутофагии — микроаутофагия и макроаутофагия. При микроаутофагии, как при образовании мультивезикулярных телец, образуются впячивания мембраны эндосомы или лизосомы, которые затем отделяются в виде внутренних пузырьков, только в них попадают вещества, синтезированные в самой клетке. Таким путём клетка может переваривать белки при нехватке энергии или строительного материала (например, при голодании). Но процессы микроаутофагии происходят и при нормальных условиях и в целом неизбирательны. Иногда в ходе микроаутофагии перевариваются и органоиды; так, у дрожжей описана микроаутофагия пероксисом и частичная микроаутофагия ядер, при которой клетка сохраняет жизнеспособность.

При макроаутофагии участок цитоплазмы (часто содержащий какие-либо органоиды) окружается мембранным компартментом, похожим на цистерну эндоплазматической сети. В результате этот участок оказывается отгорожен от остальной цитоплазмы двумя мембранами. Затем такая аутофагосома сливается с лизосомой, и её содержимое переваривается. Видимо, макроаутофагия также неизбирательна, хотя часто подчеркивается, что с помощью неё клетка может избавляться от «отслуживших свой срок» органоидов (митохондрий, рибосом и др.).

Третий тип аутофагии — шаперон-зависимая. При этом способе происходит направленный транспорт частично денатурировавших белков из цитоплазмы сквозь мембрану лизосомы в её полость.

Автолиз

Основная статья: Автолиз

Ферменты лизосом нередко высвобождаются при разрушении мембраны лизосомы. Обычно при этом они инактивируются в нейтральной среде цитоплазмы. Однако при одновременном разрушении всех лизосом клетки может произойти её саморазрушение — автолиз. Различают патологический и обычный автолиз. Распространенный вариант патологического автолиза — посмертный автолиз тканей.

В норме процессы автолиза сопровождают многие явления, связанные с развитием организма и дифференцировкой клеток. Так, автолиз клеток описывается как механизм разрушения тканей у личинок насекомых при полном превращении, а также при рассасывании хвоста у головастика. Правда, эти описания относятся к периоду, когда различия между апоптозом и некрозом ещё не были установлены, и в каждом случае требуется выяснять, не лежит ли на самом деле в основе деградации органа или ткани апоптоз, не связанный с автолизом.

У растений автолизом сопровождается дифференциация клеток, которые функционируют после смерти (например, трахеид или члеников сосудов). Частичный автолиз происходит и при созревании клеток флоэмы- члеников ситовидных трубок.

Литература

  • Ченцов Ю. С. Цитология с элементами целлюлярной патологии: Учебное пособие для университетов и медицинских вузов. — М.: МИА, 2010. — 361 с. — 4000 экз. — ISBN 978-5-9986-0013-5.
  • Молекулярная биология клетки: в 3-х томах / Б. Альбертс, А. Джонсон, Д. Льюис и др. — М.-Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2013. — Т. II. — С. 1196-1208. — 992 с. — ISBN 978-5-4344-0112-8.
  • Клетки / Б. Льюин и др. — М.: БИНОМ. Лаборатория знаний, 2011. — С. 179-235. — 951 с. — (Лучший зарубежный учебник). — ISBN 978-5-94774-794-2.
Для улучшения этой статьи желательно:

  • Найти и оформить в виде сносок ссылки на независимые авторитетные источники, подтверждающие написанное.

Пожалуйста, после исправления проблемы исключите её из списка параметров. После устранения всех недостатков этот шаблон может быть удалён любым участником.

Словари и энциклопедии

Нормативный контроль

NDL: 00569577

Лизосомы – это мембранные органеллы диаметром от 0,2 до 2,0мкм. Входят в состав эукариотической клетки, где находятся сотни лизосом. Главная их задача – это внутриклеточное переваривание (расщепление биополимеров), для этого органеллы имеют специальный набор гидролитических ферментов (сегодня известно около 60 видов). Ферментные вещества окружены замкнутой оболочкой, что предотвращает их проникновение внутрь клетки и ее разрушение.

Первые выявил лизосомы и занялся их изучением бельгийский ученый в области биохимии Кристианом де Дювом еще в 1955 году.

Лизосомы

Особенности строения лизосом

Лизосомы имеют вид мембранных мешочков с кислым содержимым. По конфигурации бывают овальными или круглыми. Во всех клетках организма есть лизосомы, исключение – эритроциты.

Особым отличием лизосом от остальных органоидов является наличие во внутренней среде кислых гидролаз. Они обеспечивают распад веществ белковой природы, жиров, углеводов, а также нуклеиновых кислот.

К лизосомальным ферментам принадлежат фосфатазы (маркерный фермент), сульфатаза, фосфолипаза и многие другие. Оптимальная среда для нормальной работы органелл — кислая (pH = 4,5 — 5). При недостаточности ферментов или не эффективной их деятельности, ощелачивании внутренней среды, могут возникнуть лизосомальные болезни накопления (гликогенозы, мукополисахаридозы, болезнь Гоше, Тай-Сакса). Как следствие в клетке накапливаются непереваренные вещества: гликопротеиды, липиды и др.

Одномембранная оболочка лизосом оснащена транспортными белками, которые обеспечивают перенос из органеллы во внутреннюю среду клетки продуктов переваривания.

Строение лизосомы

Есть ли в растительной клетке лизосомы?

Нет. В клетках растений содержатся вакуоли – образования, заполненные соком и заключены в оболочку. Они образуются из провакуолей, отошедших от ЭПС и комплекса Гольджи. Клеточные вакуоли осуществляют ряд важных функций: накопление питательных веществ, поддержание тургора, переваривание органических веществ (что указывает на сходство между растительными вакуолями и лизосомами).

Где образуются лизосомы?

Формирование лизосом идет из пузырьков, отпочковавшихся от аппарата Гольджи. Для образования органелл необходимо также участие зернистой мембраны эндоплазматической сети. Все ферменты лизосом синтезируются рибосомами ЭПС, а затем направляются к аппарату Гольджи.

Функции лизосом в клетке

  • Внутриклеточное переваривание;
  • аутофагоцитоз;
  • аутолиз.

Внутриклеточное переваривание попавших в клетку в процессе эндоцитоза питательных соединений или чужеродных агентов (бактерий, вирусов и т.д.) осуществляется под действием лизосомальных ферментов.

После переваривания захваченного материала, продукты распада попадают в цитоплазму, непереваренные частицы остаются внутри органеллы, которая теперь носит название — остаточного тельца. При нормальных условиях тельца покидают клетку. В нервных клетках, которые имеют длительный жизненный цикл, за период существования накапливается множество остаточных телец, в которых содержится пигмент старения (не выводятся также при развитии патологии).

Аутофагоцитоз — расщепление клеточных структур, которые уже стали не нужны, например, во время формирования новых органелл, от старых клетка избавляется путем аутофагоцитоза.

Аутолиз — самоуничтожение клетки, которое приводит к её разрушению. Этот процесс не всегда носит патологический характер, а происходит в нормальных условиях развития индивидуума или при дифференцировке отдельных клеток.

Например: гибель клеток естественный процесс для нормально функционирующего организма, поэтому существует запрограммированная их смерть — апоптоз. Роль лизосом при апоптозе достаточно велика: гидролитические ферменты осуществляют переваривание отмерших клеток, и очищают организм от тех, что уже выполнили свою функцию.

При преобразовании головастика в зрелую особь, лизосомы, располагающиеся в клетках хвостовой части, расщепляют его, как следствие хвост исчезает, а продукты переваривания поглощаются остальными клетками тела.

Сводная таблица строения и функций лизосом

Строение и функции лизосом
Этапы
Функции
Ранняя эндосома Образуется при эндоцитозе внеклеточного материала. Из эндосомы рецепторы, передавшие (из-за низкого рН) свой груз, переходят обратно на внешнюю оболочку.
Поздняя эндосома Из ранней эндосомы в полость поздней эндосомы переходят мешочки с частицами, поглощёнными при пиноцитозе, и пузырьки из пластинчатого комплекса с кислыми ферментами.
Лизосома Пузырьки поздней эндосомы переходят к лизосоме, содержат гидролазирующие ферменты и вещества для переваривания.
Фагосома Предназначена для расщепления крупных частиц, захваченных путём фагоцитоза. Фагосомы потом соединяются с лизосомой для дальнейшего переваривания
Аутофагосома Область цитоплазмы окружена двойной мембраной, формируется при макроаутофагии. Затем соединяется с лизосомой.
Мультивезикулярные тельца Одномембраные образования, содержат несколько мелких мембранных мешочков. Образуются при микроаутофагоцитозе, переваривают материал, поступивший снаружи.
Телолизосомы Пузырьки, накапливающие непереваренные вещества (чаще всего, липофусцин). В здоровых клетках соединяются с внешней оболочкой и с помощью экзоцитоза оставляют клетку.

Оцените, пожалуйста, статью. Мы старались:)

Лизосомальные ферменты

  • •Учебное пособие
  • •Раздел 1. Структура и свойства ферментов
  • •Инженерная энзимология. Иммобилизованные ферменты. Новые пути практического использования ферментов. Применение ферментов в промышленности, сельском хозяйстве, медицине
  • •Принцип классификации ферментов. Классы ферментов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы. Основные положения систематической и тривиальной номенклатуры ферментов
  • •Способы количественного выражения активности ферментов. Единицы активности. Удельная и молекулярная активность
  • •Методы определения активности ферментов: колориметрический, спектрофотометрический, флуориметрический, манометрический, биолюминесцентный и др.
  • •Прямой и непрямой оптический тест Варбурга. Расчет ферментативной активности при определении по конечной точке и при кинетическом определении
  • •Лекция 1.2 выделение и очистка ферментов
  • •Разрушение клеток и экстракция белков
  • •Тепловая денатурация
  • •Осаждение белков
  • •Гель-фильтрация
  • •Разделение белков путем адсорбции
  • •Выбор ионообменника
  • •Элюция адсорбированного белка
  • •Аффинная хроматография
  • •Гидрофобная хроматография
  • •Металлохелатная аффинная хроматография
  • •Высокоэффективная жидкостная хроматография
  • •Электрофорез
  • •Изоэлектрическое фокусирование
  • •Капиллярный электрофорез
  • •Двумерные системы электрофореза
  • •Кристаллизация белков
  • •Лекция 1.3 уровни структурной организации ферментов
  • •Многостадийный процесс образования пространственной структуры белка
  • •Механизмы регуляции процесса сворачивания полипептидной цепи внутри клетки
  • •Ферменты, участвующие в фолдинге белка
  • •Специальные белки, увеличивающие эффективность сворачивания полипептидной цепи в нативную конформацию
  • •Посттрансляционная модификация белка
  • •Роль доменов в пространственной организации молекул ферментов
  • •Увеличение числа доменов в ферменте и усложнение взаимодействий между ними
  • •Роль доменов в формирование активного центра фермента
  • •Роль доменов в регуляции ферментативной активности
  • •Роль доменов в связывание ферментов с мембранами
  • •Полифункциональные ферменты
  • •Бифункциональные ферменты, катализирующие реакции одного метаболического пути
  • •Бифункциональные ферменты, катализирующие противоположно направленные реакции
  • •Лекция 1.4 Кофакторы ферментов и их роль в катализе Коферменты, простетические группы, ионы металлов
  • •Классификация кофакторов
  • •Функции кофакторов
  • •Кофакторы окислительно-восстановительных процессов Никотинамидные кофакторы
  • •Кофакторы переноса групп Коферменты – производные пиридоксина
  • •Кофакторы процессов синтеза, изомеризации и расщепления с-с связей Биотин
  • •Роль металлов в функционировании ферментов
  • •Лекция 1.5. Топография активных центров простых и сложных ферментов
  • •Методы изучения активных центров ферментов
  • •Раздел 2. Кинетика и термодинамика
  • •Ферментативных реакций
  • •Лекция 2.1.
  • •Кинетика химических реакций
  • •Скорость химической реакции
  • •Основной постулат химической кинетики ‒ закон действия масс
  • •Реакции нулевого порядка
  • •Реакции первого порядка
  • •Реакции второго порядка
  • •Реакции третьего порядка
  • •Уравнения односторонних реакций 0-го, 1-го и 2-ого порядка
  • •Реакции нулевого порядка
  • •Реакции первого порядка
  • •Реакции второго порядка
  • •Молекулярность элементарных реакций
  • •Методы определения порядка реакции
  • •Зависимость скорости реакции от температуры. Уравнения Вант-Гоффа и Аррениуса.
  • •Катализ
  • •Лекция 2.2. Стационарная кинетика ферментативный реакций
  • •Уравнение Михаэлиса-Ментен
  • •Характеристика кинетических констант
  • •Методы определения Км и Vmax
  • •Лекция 2.3. Ингибиторы ферментов.
  • •Конкурентное ингибирование
  • •Неконкурентное ингибирование
  • •Бесконкурентное ингибирование
  • •Смешанный тип ингибирования
  • •Субстратное ингибирование
  • •Методы определения константы ингибирования. Метод Диксона
  • •Лекция 2.4 Ферменты, не подчиняющиеся кинетике Михаэлиса-Ментен
  • •Методы определения коэффициента Хилла
  • •Раздел 3.Механизмы ферментативного катализа
  • •Сущность явления катализа
  • •Стадии образования фермент-субстратного комплекса
  • •Природа сил, стабилизирующих различные конформационные состояния ферментсубстратного комплекса
  • •Электростатические взаимодействия
  • •Водородные связи
  • •Вандерваальсовы взаимодействия
  • •Гидрофобные взаимодействия
  • •Факторы, определяющие эффективность и специфичность ферментативного катализа
  • •Физико-химические механизмы ферментативного катализа
  • •Лекция 3.2
  • •Механизм действия гидролаз на примере карбоксипептидазы а
  • •Связывание субстрата карбоксипептидазой а
  • •Работы Липскомба с сотрудниками по установлению молекулярного механизма действия кпа
  • •Методы для изучения механизма действия ферментов
  • •Лекция 3.3 Специфичность – уникальное свойство ферментов
  • •Относительная или групповая специфичность действия
  • •Абсолютная специфичность действия
  • •Стереоспецифичность ферментов
  • •Концепция стерического соответствия «ключ-замок»
  • •Концепция индуцированного соответствия
  • •Раздел 4. Контроль активности ферментов лекция 4.1. Ферменты в клетке и организованных системах
  • •Распределение ферментов в клетке
  • •Ферменты, присутствующие в ядре
  • •Ферменты митохондрий
  • •Лизосомальные ферменты
  • •Ферменты эндоплазматического ретикулума
  • •Ферменты, локализованные в цитозоле
  • •Мембранные ферменты
  • •Уровни структурной организации ферментов в клетке
  • •Мультиферментные комплексы
  • •Пируватдегидрогеназный комплекс
  • •Мультиферментные конъюгаты
  • •Метаболоны
  • •Лекция 4.2 Изостерические и аллостерические механизмы регуляции активности ферментов
  • •Изостерическая регуляция
  • •Vmax·
  • •Изоферменты
  • •Лекция 4.3 ковалентная модификация ферментов и ее типы
  • •Лекция 4.4
  • •Регуляция количества ферментов в клетке
  • •Контроль количества ферментов в клетке – процесс, зависящий от соотношения скоростей их биосинтеза и деградации.
  • •Время полужизни различных ферментов
  • •Фермент
  • •Аминокислоты
  • •Биосинтез ферментов и его регуляция на генетическом уровне. Конститутивные и индуцибельные (адаптивные) ферменты. Репрессия и индукция биосинтеза ферментов
  • •Убиквитин-протеосомный путь деградации белков у эукариот. Убиквитин – белок, маркирующий белки для деградации. Строение 26s протеосомы
  • •Раздел 5. Прикладное значение ферментов лекция 5.1. Генетическая инженерия ферментов
  • •Использование рекомбинантных ферментов
  • •Лекция 5.2 Ферменты в медицине (часть I)
  • •Энзимодиагностика Органная специфичность в распределении ферментов
  • •Ферменты сыворотки крови
  • •Факторы, влияющие на уровень ферментов во внеклеточной жидкости
  • •Диагностическое значение снижения ферментативной активности
  • •Неспецифическое повышение ферментативной активности
  • •Применение ферментов в качестве аналитических реагентов
  • •Лактатдегидрогеназа
  • •Лекция 5.3 Ферменты в медицине (часть II) Энзимопатии
  • •Врождённые (наследственные) энзимопатии
  • •Механизм возникновения наследственных энзимопатий
  • •Блок обмена веществ
  • •Примеры наследственных энзимопатий
  • •Приобретённые энзимопатии
  • •Энзимотерапия Использование ферментов в качестве лекарственных препаратов
  • •Использование ингибиторов ферментов в качестве лекарственных препаратов
  • •Библиографический список

>Лекция № 7. Эукариотическая клетка: строение и функции органоидов

Органоиды — постоянные, обязательно присутствующие, компоненты клетки, выполняющие специфические функции.

Лизосомы

Лизосомы — одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,2 до 0,8 мкм), содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи становятся собственно лизосомами. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов. Расщепление веществ с помощью ферментов называют лизисом.

Различают: 1) первичные лизосомы, 2) вторичные лизосомы. Первичными называются лизосомы, отшнуровавшиеся от аппарата Гольджи. Первичные лизосомы являются фактором, обеспечивающим экзоцитоз ферментов из клетки.

Вторичными называются лизосомы, образовавшиеся в результате слияния первичных лизосом с эндоцитозными вакуолями. В этом случае в них происходит переваривание веществ, поступивших в клетку путем фагоцитоза или пиноцитоза, поэтому их можно назвать пищеварительными вакуолями.

Автофагия — процесс уничтожения ненужных клетке структур. Сначала подлежащая уничтожению структура окружается одинарной мембраной, затем образовавшаяся мембранная капсула сливается с первичной лизосомой, в результате также образуется вторичная лизосома (автофагическая вакуоль), в которой эта структура переваривается. Продукты переваривания усваиваются цитоплазмой клетки, но часть материала так и остается непереваренной. Вторичная лизосома, содержащая этот непереваренный материал, называется остаточным тельцем. Путем экзоцитоза непереваренные частицы удаляются из клетки.

Автолиз — саморазрушение клетки, наступающее вследствие высвобождения содержимого лизосом. В норме автолиз имеет место при метаморфозах (исчезновение хвоста у головастика лягушек), инволюции матки после родов, в очагах омертвления тканей.

Функции лизосом: 1) внутриклеточное переваривание органических веществ, 2) уничтожение ненужных клеточных и неклеточных структур, 3) участие в процессах реорганизации клеток.

Вакуоли

Вакуоли — одномембранные органоиды, представляют собой «емкости», заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи. Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль. Центральная вакуоль может занимать до 95% объема зрелой клетки, ядро и органоиды оттесняются при этом к клеточной оболочке. Мембрана, ограничивающая растительную вакуоль, называется тонопластом. Жидкость, заполняющая растительную вакуоль, называется клеточным соком. В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ (гликозиды, алкалоиды), некоторые пигменты (антоцианы).

В животных клетках имеются мелкие пищеварительные и автофагические вакуоли, относящиеся к группе вторичных лизосом и содержащие гидролитические ферменты. У одноклеточных животных есть еще сократительные вакуоли, выполняющие функцию осморегуляции и выделения.

Функции вакуоли: 1) накопление и хранение воды, 2) регуляция водно-солевого обмена, 3) поддержание тургорного давления, 4) накопление водорастворимых метаболитов, запасных питательных веществ, 5) окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей семян, 6) см. функции лизосом.

Эндоплазматическая сеть, аппарат Гольджи, лизосомы и вакуоли образуют единую вакуолярную сеть клетки, отдельные элементы которой могут переходить друг в друга.

Митохондрии

Строение митохондрии:
1 — наружная мембрана;
2 — внутренняя мембрана; 3 — матрикс; 4 — криста; 5 — мультиферментная система; 6 — кольцевая ДНК.

Форма, размеры и количество митохондрий чрезвычайно варьируют. По форме митохондрии могут быть палочковидными, округлыми, спиральными, чашевидными, разветвленными. Длина митохондрий колеблется в пределах от 1,5 до 10 мкм, диаметр — от 0,25 до 1,00 мкм. Количество митохондрий в клетке может достигать нескольких тысяч и зависит от метаболической активности клетки.

Митохондрия ограничена двумя мембранами. Наружная мембрана митохондрий (1) гладкая, внутренняя (2) образует многочисленные складки — кристы (4). Кристы увеличивают площадь поверхности внутренней мембраны, на которой размещаются мультиферментные системы (5), участвующие в процессах синтеза молекул АТФ. Внутреннее пространство митохондрий заполнено матриксом (3). В матриксе содержатся кольцевая ДНК (6), специфические иРНК, рибосомы прокариотического типа (70S-типа), ферменты цикла Кребса.

Митохондриальная ДНК не связана с белками («голая»), прикреплена к внутренней мембране митохондрии и несет информацию о строении примерно 30 белков. Для построения митохондрии требуется гораздо больше белков, поэтому информация о большинстве митохондриальных белков содержится в ядерной ДНК, и эти белки синтезируются в цитоплазме клетки. Митохондрии способны автономно размножаться путем деления надвое. Между наружной и внутренней мембранами находится протонный резервуар, где происходит накопление Н+.

Функции митохондрий: 1) синтез АТФ, 2) кислородное расщепление органических веществ.

Согласно одной из гипотез (теория симбиогенеза) митохондрии произошли от древних свободноживущих аэробных прокариотических организмов, которые, случайно проникнув в клетку-хозяина, затем образовали с ней взаимовыгодный симбиотический комплекс. В пользу этой гипотезы свидетельствуют следующие данные. Во-первых, митохондриальная ДНК имеет такие же особенности строения как и ДНК современных бактерий (замкнута в кольцо, не связана с белками). Во-вторых, митохондриальные рибосомы и рибосомы бактерий относятся к одному типу — 70S-типу. В-третьих, механизм деления митохондрий сходен с таковым бактерий. В-четвертых, синтез митохондриальных и бактериальных белков подавляется одинаковыми антибиотиками.

Пластиды

Строение пластид: 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — строма; 4 — тилакоид; 5 — грана; 6 — ламеллы; 7 — зерна крахмала; 8 — липидные капли.

Пластиды характерны только для растительных клеток. Различают три основных типа пластид: лейкопласты — бесцветные пластиды в клетках неокрашенных частей растений, хромопласты — окрашенные пластиды обычно желтого, красного и оранжевого цветов, хлоропласты — зеленые пластиды.

Хлоропласты. В клетках высших растений хлоропласты имеют форму двояковыпуклой линзы. Длина хлоропластов колеблется в пределах от 5 до 10 мкм, диаметр — от 2 до 4 мкм. Хлоропласты ограничены двумя мембранами. Наружная мембрана (1) гладкая, внутренняя (2) имеет сложную складчатую структуру. Наименьшая складка называется тилакоидом (4). Группа тилакоидов, уложенных наподобие стопки монет, называется граной (5). В хлоропласте содержится в среднем 40–60 гран, расположенных в шахматном порядке. Граны связываются друг с другом уплощенными каналами — ламеллами (6). В мембраны тилакоидов встроены фотосинтетические пигменты и ферменты, обеспечивающие синтез АТФ. Главным фотосинтетическим пигментом является хлорофилл, который и обусловливает зеленый цвет хлоропластов.

Внутреннее пространство хлоропластов заполнено стромой (3). В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты цикла Кальвина, зерна крахмала (7). Внутри каждого тилакоида находится протонный резервуар, происходит накопление Н+. Хлоропласты, также как митохондрии, способны к автономному размножению путем деления надвое. Они содержатся в клетках зеленых частей высших растений, особенно много хлоропластов в листьях и зеленых плодах. Хлоропласты низших растений называют хроматофорами.

Функция хлоропластов: фотосинтез. Полагают, что хлоропласты произошли от древних эндосимбиотических цианобактерий (теория симбиогенеза). Основанием для такого предположения является сходство хлоропластов и современных бактерий по ряду признаков (кольцевая, «голая» ДНК, рибосомы 70S-типа, способ размножения).

Лейкопласты. Форма варьирует (шаровидные, округлые, чашевидные и др.). Лейкопласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя образует малочисленные тилакоиды. В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты синтеза и гидролиза запасных питательных веществ. Пигменты отсутствуют. Особенно много лейкопластов имеют клетки подземных органов растения (корни, клубни, корневища и др.). Функция лейкопластов: синтез, накопление и хранение запасных питательных веществ. Амилопласты — лейкопласты, которые синтезируют и накапливают крахмал, элайопласты — масла, протеинопласты — белки. В одном и том же лейкопласте могут накапливаться разные вещества.

Хромопласты. Ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя или также гладкая, или образует единичные тилакоиды. В строме имеются кольцевая ДНК и пигменты — каротиноиды, придающие хромопластам желтую, красную или оранжевую окраску. Форма накопления пигментов различная: в виде кристаллов, растворены в липидных каплях (8) и др. Содержатся в клетках зрелых плодов, лепестков, осенних листьев, редко — корнеплодов. Хромопласты считаются конечной стадией развития пластид.

Функция хромопластов: окрашивание цветов и плодов и тем самым привлечение опылителей и распространителей семян.

Все виды пластид могут образовываться из пропластид. Пропластиды — мелкие органоиды, содержащиеся в меристематических тканях. Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения. Лейкопласты могут превращаться в хлоропласты (позеленение клубней картофеля на свету), хлоропласты — в хромопласты (пожелтение листьев и покраснение плодов). Превращение хромопластов в лейкопласты или хлоропласты считается невозможным.

Рибосомы

Строение рибосомы:
1 — большая субъединица; 2 — малая субъединица.

Рибосомы — немембранные органоиды, диаметр примерно 20 нм. Рибосомы состоят из двух субъединиц — большой и малой, на которые могут диссоциировать. Химический состав рибосом — белки и рРНК. Молекулы рРНК составляют 50–63% массы рибосомы и образуют ее структурный каркас. Различают два типа рибосом: 1) эукариотические (с константами седиментации целой рибосомы — 80S, малой субъединицы — 40S, большой — 60S) и 2) прокариотические (соответственно 70S, 30S, 50S).

В составе рибосом эукариотического типа 4 молекулы рРНК и около 100 молекул белка, прокариотического типа — 3 молекулы рРНК и около 55 молекул белка. Во время биосинтеза белка рибосомы могут «работать» поодиночке или объединяться в комплексы — полирибосомы (полисомы). В таких комплексах они связаны друг с другом одной молекулой иРНК. Прокариотические клетки имеют рибосомы только 70S-типа. Эукариотические клетки имеют рибосомы как 80S-типа (шероховатые мембраны ЭПС, цитоплазма), так и 70S-типа (митохондрии, хлоропласты).

Субъединицы рибосомы эукариот образуются в ядрышке. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка.

Функция рибосом: сборка полипептидной цепочки (синтез белка).

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *