Парниковые газы

Парниковые газы

Содержание

Источники выбросов парниковых газов

С момента образования атмосферы на планете появился парниковый эффект. Климат Земли менялся в течение миллионов лет, периодически возникали ледниковые и межледниковые периоды. Эти циклы длились десятки тысяч лет и их источниками были естественные природные процессы:

  • водяной пар;
  • углекислый газ;
  • вулканическая активность;
  • лесные пожары;
  • твердые взвешенные частицы природного происхождения.

За последний век климатические изменения происходят стремительно, особенно с развитием индустриализации. К природным источникам повышения в атмосфере парниковых газов присоединились антропогенные:

  • увеличение концентрации CO2;
  • уничтожение лесов;
  • урбанизация;
  • сельское хозяйство.

Для снижения выброса летучих соединений принимают меры, включающие улучшение технологических процессов на предприятиях. Чтобы продуктивно выполнять принципы для каждой группы выбросов, их объединили в категории.

Категория

Возможные источники выбросов

Нефть
  • Бурение, тестирование нефтяных скважин
  • Обслуживание скважин, нефтяных сланцев, песков
  • Перевозка нефтепродуктов к очистным сооружениям
  • Перевозка сырой нефти
  • Перегонка на нефтеперегонных заводах
  • Распределение очищенных нефтепродуктов на конечных станциях трубопроводов
  • Разливание и случайное высвобождение
Природный газ
  • Бурение, тестирование, обслуживание, закрытие скважин
  • Поломки трубопроводов и других хранилищ
  • Сбор, переработка
  • Работа установок по переработке
  • Перевозка к промышленным покупателям
  • Распределение к конечным покупателям
  • Повреждение трубопроводов, скважин

Опасный потенциал

Усиление парникового эффекта происходит ежегодно. Это связано с нарушением энергетического баланса, который основан на взаимодействии Мирового океана и атмосферы. Циркуляция водных масс и основные течения влияют на планетарный климат. Опасный потенциал имеет смена движения Гольфстрима из-за климатических изменений.

Сначала XX века доля парниковых газов продолжает расти, увеличивая интенсивность с каждым годом. Большая часть из них приходится на двуокись углерода. На сегодня именно CO2 отдается главная роль среди всех причин глобального потепления.

Для климатических процессов губительным оказывается постоянное увеличение источников метана. Среди них основные это: сокращение растительных площадей и активное развитие животноводства. В перспективе метановые выбросы более опасны (период распада 10 лет).

Итоговое пребывание половины парниковых газов в атмосфере достигает 200 лет, остальной объём поглощается растительностью, водными массами. Перемешанные парниковые газы способствуют задержанию исходящей от земной поверхности тепловой энергии.

Образование мелких аэрозольных частиц возникает из-за лесных пожаров, выбросов транспорта. Объемы, находящиеся во взвешенном состоянии приводят к замутнению слоев тропосферы и повышению облачного покрова.

Основные парниковые газы Земли

Парниковый эффект возрастает из-за кумулятивного действия основных и второстепенных парниковых газов, которые отлично перемешиваются между собой. От того какими темпами будет развиваться экономика в будущем и зависит насколько быстро изменится климат. Стремительное изменение характерно при отсутствии или несоблюдении мер, снижающих или устраняющих влияние выбросов на атмосферу.

Двуокись углерода по-прежнему главная из причин антропогенного парникового эффекта и составляет 80%. На метан приходится до 19%, другие виды до 2%. По сравнению с началом производственной революции XVIII века выброс в атмосферу CH4 и CO2 вырос с 30% до 150%. По гигиеническим стандартам ВОЗ существует предельно допустимая концентрация озона, превышение которого приводит к преждевременному старению легких.

Водяной пар

До 70% «эффекта парника» приходится на долю газа естественного происхождения. Увеличение количества водяного пара прямо пропорционально повышению температуры воздуха. Это замкнутый круг, в котором есть и благоприятное действие. Формирование облачной массы защищает атмосферу от солнечных лучей, предотвращая ее перегрев.

К природной части парникового газа добавляется большая масса CO2, которая образуется от:

  • сжигания топливных ископаемых;
  • разложения биомассы;
  • уничтожения растительности;
  • технологических процессов;
  • обмена веществ в биосфере.

Определенный процент от общего количества поглощается лесами, но как источника очищения воздуха их уже не хватает.

Вторым по распространённости значится парниковый газ метан. Среди основных его источников это:

  • развитие скотоводства;
  • сокращение площади лесных насаждений;
  • производство сельскохозяйственных продуктов;
  • утечка из хранилищ при нарушении герметизации.

Хотя этот углеводород и не долговечен, но масштабное увеличение глобальных выбросов, привело к тому, что он в 23 раза сильнее задерживает тепло в атмосфере.

Тропосферный озон

Этот газ присутствует в тропосфере, стратосфере и мезосфере. Состояние стратосферного озонового слоя влияет на степень защиты от ультрафиолетового излучения. Тропосферный озон — полноценный парниковый газ, который нарушает радиационный фон Земли и способен изменять концентрацию других газов (метана).

Второстепенные парниковые газы

По распространению и концентрации в атмосфере второстепенных газов меньше, чем главных. Газообразные элементы этих групп являются озоноразрушающими. По подсчетам к середине XXI века влияние оксида азота, фреонов может быть приравнено к углекислому газу. Фторхлоруглероды — это единственный вид соединений, который не встречается в естественной среде.

Канадские исследователи из Торонтского университета открыли новый парниковый газ — перфтортриабутиламин. Он увеличивает прогрев Земли более чем в 7000 раз за 100 лет, но пока при небольших концентрационных выбросах серьезной угрозы не представляет.

Оксиды азота

Высокоочищенная продукция применяется в медицине для ингаляционного наркоза, в пищевой промышленности в качестве искусственных добавок. Неочищенные фракции применяются в двигателях внутреннего сгорания.

Но массовое проникновение оксида азота в атмосферу связано с сельскохозяйственной производительностью. Основным источником считается газ, выделяющийся из стоков животноводческих хозяйств и разложившихся в почве азотистых удобрений.

Фреоны

Эта группа углеводородов применяется в качестве аэрозолей и хладагентов для холодильных установок, кондиционеров. Превышают парниковую активность углекислого газ до 8500 раз. Многие страны отказалась от фреонов и перешли на менее опасные гидрофторуглероды.

Новый парниковый газ

Перфторуглероды образуются при изготовлении электротехники, алюминия, растворителей, хладагентов, смазочных масел. В потенциале загрязнение парниковыми газами с содержанием фтора намного опаснее.

Гексафторид серы необходим для пожаротушения, выбросы в атмосферу происходят при изготовлении электроизоляционного материала и применении в металлургии. Способен кумулировать тепловое излучение.

Пути решения проблемы

Международное сообщество постоянно разрабатывает и усовершенствует новые направления по сокращению выбросов парниковых газов. Экополитика направлена на снижение топливного потребления. Эта мера выполнима при переходе на безтопливный транспорт.

Наложение запрета на вырубку лесов влияет на улучшение состояния экосистемы, так как именно растительность поглощает до половины CO2. Сохраненные лесные участки в тропических странах оптимизировали мировые индексы по выбросу газов.

Международные экологические организации контролируют деятельность газо- и нефтеперерабатывающих компаний по метановым выбросам во многих странах.

Производство газовых водонагревателей и бойлеров по установленным европейским стандартам обязано соблюдать требования по выбросу углекислоты во время их работы.

Возобновляемая энергия — вызов парниковым газам

С экологической точки зрения все большую известность набирает биоэнергетика. Инвестиции, вкладываемые в эту отрасль неуклонно растут. Под биоэнергетикой понимают получение энергии вследствие естественных процессов, которые регулярно протекают в природе. Солнечный свет, ветер, приливы, водные потоки представляют важное значение для технических нужд.

При возобновляемой энергии работа ветряных, солнечных, гидравлических станций сопровождается «нулевой эмиссией CO2». На основе технологий энергосбережения во Франции построена фотоэлектрическая станция — Cestas. Лидерские позиции по ветроэнергетике занимают Китай и США.

Для получения биотоплива (этанола), способного ликвидировать парниковые газы от сжигания топлива во многих странах мира, выращивают энергетические культуры. В Северной Америке «зеленое топливо» вырабатывают из рисовой, зерновой целлюлозы, в Бразилии из сахарного тростника.

С каждым годом экологическое состояние планеты ухудшается. Поэтому уменьшению выбросов в атмосферу способствуют следующие меры:

  • модернизация промышленных производств;
  • охрана и возобновление лесных насаждений;
  • усовершенствование накопителей газообразных веществ;
  • финансовое стимулирование сниженными налогами при применении энергосбережения;
  • использование экотоплива и электромобилей;
  • введение штрафов за загрязнение окружающей среды.

История исследований

Идея о механизме парникового эффекта была впервые изложена в 1827 году Жозефом Фурье в статье «Записка о температурах земного шара и других планет», в которой он рассматривал различные механизмы формирования климата Земли, при этом он рассматривал как факторы, влияющие на общий тепловой баланс Земли (нагрев солнечным излучением, охлаждение за счёт лучеиспускания, внутреннее тепло Земли), так и факторы, влияющие на теплоперенос и температуры климатических поясов (теплопроводность, атмосферная и океаническая циркуляция).

При рассмотрении влияния атмосферы на радиационный баланс Фурье проанализировал опыт Ф. де Соссюра с зачернённым изнутри сосудом, накрытым стеклом. Де Соссюр измерял разность температур внутри и снаружи такого сосуда, выставленного на прямой солнечный свет. Фурье объяснил повышение температуры внутри такого «мини-парника» по сравнению с внешней температурой действием двух факторов: блокированием конвективного теплопереноса (стекло предотвращает отток нагретого воздуха изнутри и приток прохладного снаружи) и различной прозрачностью стекла в видимом и инфракрасном диапазоне.

Именно последний фактор и получил в позднейшей литературе название парникового эффекта — поглощая видимый свет, поверхность нагревается и испускает тепловые (инфракрасные) лучи; поскольку стекло прозрачно для видимого света и почти непрозрачно для теплового излучения, то накопление тепла ведёт к такому росту температуры, при котором количество проходящих через стекло тепловых лучей достаточно для установления равновесия.

Фурье постулировал, что оптические свойства атмосферы Земли аналогичны оптическим свойствам стекла, то есть её прозрачность в инфракрасном диапазоне ниже, чем прозрачность в диапазоне оптическом, однако количественные данные по поглощению атмосферы в инфракрасном диапазоне долгое время являлись предметом дискуссий.

В 1896 году Сванте Аррениус, шведский физико-химик, для количественного определения поглощении атмосферой Земли теплового излучения проанализировал данные Сэмюэла Лэнгли о болометрической светимости Луны в инфракрасном диапазоне. Аррениус сравнил данные, полученные Лэнгли при разных высотах Луны над горизонтом (то есть при различных величинах пути излучения Луны через атмосферу), с расчетным спектром её теплового излучения и рассчитал как коэффициенты поглощения инфракрасного излучения водяным паром и углекислым газом в атмосфере, так и изменения температуры Земли при вариациях концентрации углекислого газа. Аррениус также выдвинул гипотезу, что снижение концентрации в атмосфере углекислого газа может являться одной из причин возникновения ледниковых периодов.

Количественное определение парникового эффекта

Суммарная энергия солнечного излучения, поглощаемого в единицу времени планетой радиусом R {\displaystyle R} и сферическим альбедо A {\displaystyle A} равна:

E = π R 2 E 0 r 2 ( 1 − A ) {\displaystyle E=\pi R^{2}{E_{0} \over r^{2}}(1-A)} ,

где E 0 {\displaystyle E_{0}} — солнечная постоянная, и r {\displaystyle r} — расстояние до Солнца.

В соответствии с законом Стефана — Больцмана равновесное тепловое излучение L {\displaystyle L} планеты с радиусом R {\displaystyle R} , то есть площадью излучающей поверхности 4 π R 2 {\displaystyle 4\pi R^{2}} :

L = 4 π R 2 σ T ¯ E 4 {\displaystyle L=4\pi R^{2}\sigma {\bar {T}}_{E}^{4}} ,

где T ¯ E {\displaystyle {\bar {T}}_{E}} — эффективная температура планеты.

Количественно величина парникового эффекта Δ T ¯ {\displaystyle \Delta {\bar {T}}} определяется как разница между средней приповерхностной температурой атмосферы планеты T ¯ S {\displaystyle {\bar {T}}_{S}} и её эффективной температурой T ¯ E {\displaystyle {\bar {T}}_{E}} . Парниковый эффект существенен для планет с плотными атмосферами, содержащими газы, поглощающие излучение в инфракрасной области спектра, и пропорционален плотности атмосферы. Следствием парникового эффекта является также сглаживание температурных контрастов как между полярными и экваториальными зонами планеты, так и между дневными и ночными температурами.

Таблица 1

Планета Атм. давление у поверхности, атм. T ¯ E {\displaystyle {\bar {T}}_{E}} T ¯ S {\displaystyle {\bar {T}}_{S}} Δ T ¯ {\displaystyle \Delta {\bar {T}}} T ¯ m a x {\displaystyle {\bar {T}}_{max}} T ¯ m i n {\displaystyle {\bar {T}}_{min}} Δ T {\displaystyle \Delta T}
Венера 90 231 735 504
Земля 1 249 288 39 313 200 113
Луна 0 0 393 113 280
Марс 0,006 210 218 8 300 147 153
  1. Температуры даны в Кельвинах, T ¯ m a x {\displaystyle {\bar {T}}_{max}} — средняя максимальная температура в полдень на экваторе, T ¯ m i n {\displaystyle {\bar {T}}_{min}} — средняя минимальная температура.

Природа парникового эффекта

Парниковый эффект атмосфер обусловлен их различной прозрачностью в видимом и дальнем инфракрасном диапазонах. На диапазон длин волн 400—1500 нм в видимом свете и ближнем инфракрасном диапазоне приходится 75 % энергии солнечного излучения, большинство газов не поглощают излучение в этом диапазоне; рэлеевское рассеяние в газах и рассеяние на атмосферных аэрозолях не препятствуют проникновению излучения этих длин волн в глубины атмосфер и достижению поверхности планет. Солнечный свет поглощается поверхностью планеты и её атмосферой (особенно излучение в ближней УФ- и ИК-областях) и разогревает их. Нагретая поверхность планеты и атмосфера излучают в дальнем инфракрасном диапазоне: так, в случае Земли при T ¯ S {\displaystyle {\bar {T}}_{S}} равном 300 K, 75 % теплового излучения приходится на диапазон 7,8—28 мкм, для Венеры при T ¯ S {\displaystyle {\bar {T}}_{S}} равном 700 K — 3,3—12 мкм.

Атмосфера, содержащая многоатомные газы (двухатомные газы диатермичны — прозрачны для теплового излучения), поглощающие в этой области спектра (т. н. парниковые газы — H2O, CO2, CH4 и пр. — см. Рис. 1), существенно непрозрачна для такого излучения, направленного от её поверхности в космическое пространство, то есть имеет в ИК-диапазоне большую оптическую толщину. Вследствие такой непрозрачности атмосфера становится хорошим теплоизолятором, что, в свою очередь, приводит к тому, что переизлучение поглощённой солнечной энергии в космическое пространство происходит в верхних холодных слоях атмосферы. В результате эффективная температура Земли как излучателя оказывается более низкой, чем температура её поверхности.

В формировании парникового эффекта очень велика и мало изучена роль облаков в атмосфере, особенно ночью и зимой в умеренных и полярных широтах.

Влияние парникового эффекта на климат планет

Степень влияния парникового эффекта на приповерхностные температуры планет (при оптической толщине атмосферы < 1) зависит от оптической плотности парниковых газов, облаков в атмосфере планеты, и, соответственно, их парциального давления у поверхности планеты. Таким образом, парниковый эффект Δ T ¯ {\displaystyle \Delta {\bar {T}}} наиболее выражен у планет с плотной атмосферой, составляя у Венеры ~500 K.

Таблица 2

Планета Атм. давление
у поверхности, атм.
Концентрация
CO2, %
P C O 2 {\displaystyle P_{CO_{2}}}
атм.
Δ T ¯ {\displaystyle \Delta {\bar {T}}}
Венера ~ 93 ~ 96,5 ~ 89,8 504
Земля 1 0,038 ~ 0,0004 39
Марс ~ 0,007 95,72 ~ 0,0067 8

Вместе с тем следует отметить, что величина парникового эффекта зависит от количества парниковых газов в атмосферах и, соответственно, зависит от химической эволюции и изменений состава планетарных атмосфер.

Парниковый эффект и климат Земли

Климатические индикаторы за последние 0,5 млн лет: изменение уровня океана (синий), концентрация 18O в морской воде, концентрация CO2 в антарктическом льду. Деление временной шкалы — 20 000 лет. Пики уровня моря, концентрации CO2 и минимумы 18O совпадают с межледниковыми температурными максимумами.

По степени влияния на климат парникового эффекта Земля занимает промежуточное положение между Венерой и Марсом: у Венеры повышение температуры приповерхностной атмосферы в ~13 раз выше, чем у Земли, в случае Марса — в ~5 раз ниже; эти различия являются следствием различных плотностей и составов атмосфер этих планет.

При неизменности солнечной постоянной и, соответственно, потока солнечной радиации, среднегодовые приповерхностные температуры и климат, определяются тепловым балансом Земли. Для теплового баланса выполняются условия равенства величин поглощения коротковолновой радиации и излучения длинноволновой радиации в системе Земля—атмосфера. В свою очередь, доля поглощенной коротковолновой солнечной радиации определяется общим (поверхность и атмосфера) альбедо Земли. На величину потока длинноволновой радиации, уходящей в космос, существенное влияние оказывает парниковый эффект, в свою очередь, зависящий от состава и температуры земной атмосферы и облачного покрова в атмосфере.

Основными парниковыми газами, в порядке их оцениваемого воздействия на тепловой баланс Земли, являются водяной пар, углекислый газ, метан и озон

Основные парниковые газы атмосферы Земли

Газ Формула Вклад
(%)
Водяной пар H2O 36 — 72 %
Диоксид углерода CO2 9 — 26 %
Метан CH4 4 — 9 %
Озон O3 3 — 7 %

Главный вклад в парниковый эффект земной атмосферы вносит водяной пар или влажность воздуха тропосферы, влияние других газов гораздо менее существенно по причине их малой концентрации. Также существенный вклад вносит облачный покров в атмосфере Земли.

Вместе с тем концентрация водяного пара в тропосфере существенно зависит от приповерхностной температуры: увеличение суммарной концентрации «парниковых» газов в атмосфере должно привести к усилению влажности и парникового эффекта, вызванного водяным паром, который в свою очередь приведет к увеличению приповерхностной температуры.

При понижении приповерхностной температуры концентрация водяных паров падает, что ведет к уменьшению парникового эффекта. Одновременно с этим при снижении температуры в приполярных районах формируется снежно-ледяной покров, ведущий к повышению альбедо и, совместно с уменьшением парникового эффекта, к дальнейшему понижению средней приповерхностной температуры.

Таким образом, климат на Земле может переходить в стадии потепления и похолодания в зависимости от изменения альбедо системы Земля — атмосфера и парникового эффекта.

Климатические циклы коррелируют с концентрацией углекислого газа в атмосфере: в течение среднего и позднего плейстоцена, предшествующих современному времени, концентрация атмосферного углекислого газа снижалась во время длительных ледниковых периодов и резко повышалась во время кратких межледниковий.

В течение последних десятилетий наблюдается рост концентрации углекислого газа в атмосфере.

Примечания

  1. Joseph Fourier. Mémoire sur les températures du globe terrestre et des espaces planétaires p.97-125 Mémoires de l’Académie royale des sciences de l’Institut de France, t. VII, p.570 à 604. Paris, Didot; 1827 // Gallica-Math: Œuvres complètes (недоступная ссылка). Дата обращения 23 мая 2008. Архивировано 6 декабря 2008 года.
  2. Тепло, выделяемое в результате человеческой активности Жозеф Фурье не рассматривал в качестве значимого фактора.
  3. Samuel P. Langley (and Frank W. Very). The Temperature of the Moon, Memoir of the National Academy of Sciences, vol. iv. 9th mem. 193pp (1890)
  4. «On the Influence of Carbonic Acid in the Air Upon the Temperature of the Ground», Philosophical Magazine and Journal Science, Series 5, Volume 41, pages 237—276 (англ.)
  5. 1 2 3 4 Александр Чернокульский. Климат как отражение облаков (рус.) // Наука и жизнь. — 2017. — № 10. — С. 70—77.
  6. Сравнительные значения для трех планет земной группы без учета давления водяного пара, температуры приведены в Кельвинах.
  7. : Kiehl, J. T.; Kevin E. Trenberth. Earth’s Annual Global Mean Energy Budget (англ.) // Bulletin of the American Meteorological Society (англ.)русск. : journal. — 1997. — February (vol. 78, no. 2). — P. 197—208. — ISSN 0003-0007. — DOI:10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2.

Вопрос 55. Какие газы вызывают парниковый эффект. Последствия увеличения парниковых газов в атмосфере.

  • •Вопрос 1. Кто впервые ввел в научную литературу термин биосфера.
  • •Вопрос 2. Что представляет собой биосфера.
  • •Вопрос 3. Роль в. И. Вернадского в развитии учения о биосфере.
  • •Вопрос 4. Перечислите стадии эволюции Земли и биосферы.
  • •Вопрос 5. Чему и кому в. И. Вернадский отвел в эволюции биосферы первостепенную преобразующую роль.
  • •Вопрос 6. Назовите границы биосферы.
  • •Вопрос 7. Назовите состав биосферы по в. И. Вернадскому.
  • •Вопрос 8. Что является результатом совместной деятельности живых организмов и геологических процессов.
  • •Вопрос 9. Что создается и перерабатывается в процессе жизнедеятельности организмов.
  • •Вопрос 10. Что образуется в биосфере без участия живых организмов.
  • •Вопрос 11. Живое вещество. Назовите и охарактеризуйте свойства живого вещества.
  • •Вопрос 12. Живое вещество. Функции живого вещества.
  • •Вопрос 13. С какой функцией живого вещества связывают Первую и Вторую точку Пастера.
  • •Вопрос 14. Биосфера. Назовите и охарактеризуйте основные свойства биосферы.
  • •Вопрос 15. В чем сущность принципа Ле Шателье – Брауна.
  • •Вопрос 16. Сформулируйте закон Эшби.
  • •Вопрос 17. Что является основой динамического равновесия и устойчивости экосистем. Устойчивость и саморегуляция экосистемы
  • •Вопрос 18. Круговорот веществ. Типы круговоротов веществ.
  • •Вопрос 19. Изобразите и поясните блоковую модель экосистемы.
  • •Вопрос 20. Биом. Назовите наиболее крупные наземные биомы.
  • •Вопрос 21. В чем сущность «правила краевого эффекта».
  • •Вопрос 22. Виды эдификаторы, доминанты.
  • •Вопрос 23. Трофическая цепь. Автотрофы, гетеротрофы, редуценты.
  • •Вопрос 24. Экологическая ниша. Правило конкурентного исключения г. Ф. Гаузе.
  • •Вопрос 25. Представьте в виде уравнения баланс пищи и энергии для живого организма.
  • •Вопрос 26. Правило 10%, кто сформулировал и когда.
  • •Вопрос 27. Продукция. Первичная и Вторичная продукция. Биомасса организма.
  • •Вопрос 28. Пищевая цепь. Типы пищевых цепей.
  • •Вопрос 29. Для чего используют экологические пирамиды, назовите их.
  • •Вопрос 30. Сукцессии. Первичная и вторичная сукцессия.
  • •Вопрос 31. Назовите последовательные стадии первичной сукцессии. Климакс.
  • •Вопрос 32. Назовите и охарактеризуйте этапы воздействия человека на биосферу.
  • •Вопрос 33. Ресурсы биосферы. Классификация ресурсов.
  • •Вопрос 34. Атмосфера – состав, роль в биосфере.
  • •Вопрос 35. Значение воды. Классификация вод.
  • •Классификация подземных вод
  • •Вопрос 36. Биолитосфера. Ресурсы биолитосферы.
  • •Вопрос 37. Почва. Плодородие. Гумус. Образование почвы.
  • •Вопрос 38. Ресурсы растительности. Лесные ресурсы. Ресурсы животного мира.
  • •Вопрос 39. Биоценоз. Биотоп. Биогеоценоз.
  • •Вопрос 40. Факториальная и популяционная экология, синэкология.
  • •Вопрос 41. Назовите и охарактеризуйте экологические факторы.
  • •Вопрос 42. Биогеохимические процессы. Как осуществляется круговорот азота.
  • •Вопрос 43. Биогеохимические процессы. Как осуществляется круговорот кислорода. Круговорот кислорода в биосфере
  • •Вопрос 44. Биогеохимические процессы. Как осуществляется круговорот углерода.
  • •Вопрос 45. Биогеохимические процессы. Как осуществляется круговорот воды.
  • •Вопрос 46. Биогеохимические процессы. Как осуществляется круговорот фосфора.
  • •Вопрос 47. Биогеохимические процессы. Как осуществляется круговорот серы.
  • •Вопрос 48. Главный источник энергии на Земле.
  • •Вопрос 49. Энергетический баланс биосферы.
  • •Вопрос 50. Атмосфера. Назовите слои атмосферы.
  • •Вопрос 51. Виды загрязнителей атмосферы.
  • •Вопрос 52. Как происходит естественное загрязнение атмосферы.
  • •Вопрос 53. Назовите основные источники антропогенного загрязнения атмосферы.
  • •Вопрос 54. Основные ингредиенты загрязнения атмосферы.
  • •Вопрос 55. Какие газы вызывают парниковый эффект. Последствия увеличения парниковых газов в атмосфере.
  • •Вопрос 56. Озон. Озоновая дыра. Какие газы вызывают разрушение озонового слоя. Последствия для живых организмов.
  • •Вопрос 57. Причины образования и выпадения кислотных осадков. Какие газы вызывают образование кислотных осадков. Последствия.
  • •Последствия кислотных дождей
  • •Вопрос 58. Смог, его образование и влияние на человека.
  • •Вопрос 59. Пдк, разовая пдк, среднесуточная пдк. Пдв.
  • •Вопрос 60. Для чего используют пылеуловители. Типы пылеуловителей.
  • •Вопрос 63. Назовите и охарактеризуйте методы очистки воздуха от паро — и газообразных загрязнителей.
  • •Вопрос 64. Чем метод абсорбции отличается от метода адсорбции.
  • •Вопрос 65. От чего зависит выбор метода очистки газа.
  • •Вопрос 66. Назовите, какие газы образуются при сгорании топлива автотранспорта.
  • •Вопрос 67. Пути очистки выхлопных газов от автотранспорта.
  • •Вопрос 68. Гидросфера. Литосфера. Источники загрязнения.
  • •2. Источники и виды загрязнения гидросферы
  • •3. Источники загрязнения литосферы
  • •Вопрос 69. Качество воды. Критерии качества воды. 4 класса воды.
  • •Вопрос 70. Норма водопотребления и водоотведения.
  • •Вопрос 71. Назовите физико-химические и биохимические методы очистки воды. Физико-химический метод очистки воды
  • •Коагуляция
  • •Выбор коагулянта
  • •Органические коагулянты
  • •Неорганические коагулянты
  • •Вопрос 72. Сточная вода. Охарактеризуйте гидромеханические методы очистки сточных вод от твердых примесей (процеживание, отстаивание, фильтрование).
  • •Вопрос 73. Охарактеризуйте химические методы очистки сточных вод.
  • •Вопрос 74. Охарактеризуйте биохимические методы очистки сточных вод. Достоинства и недостатки этого метода.
  • •Вопрос 75. Аэротенки. Классификация аэротенков.
  • •Вопрос 76. Суша. Два вида вредного воздействия на почву.
  • •Вопрос 77. Назовите мероприятия по охране почв от загрязнений.
  • •Вопрос 78. Утилизация и переработка отходов.
  • •3.1.Огневой способ.
  • •3.2. Технологии высокотемпературного пиролиза.
  • •3.3. Плазмохимическая технология.
  • •3.4.Использование вторичных ресурсов.
  • •3.5 Захоронение отходов
  • •3.5.1.Полигоны
  • •3.5.2 Изоляторы, подземные хранилища.
  • •3.5.3.Заполнение карьеров.
  • •Вопрос 79. Назовите международные природоохранные организации. Межправительственные экологические организации
  • •Вопрос 80. Назовите международные экологические движения. Неправительственные международные организации
  • •Вопрос 81. Назовите природоохранные организации рф.
  • •Международный союз охраны природы (мсоп) в россии
  • •Вопрос 82. Виды природоохранных мероприятий.
  • •1. Природоохранные мероприятия в области охраны и рационального использования водных ресурсов:
  • •2. Природоохранные мероприятия в области охраны атмосферного воздуха:
  • •3. Природоохранные мероприятия в области охраны и рационального использования земельных ресурсов:
  • •4. Природоохранные мероприятия в области управления отходами:
  • •5. Энергосберегающие мероприятия:
  • •Вопрос 83. Почему Всемирный день охраны природы отмечается 5 июня.
  • •Вопрос 85. Устойчивое развитие. Правовая охрана биосферы.
  • •Правовая охрана биосферы
  • •Вопрос 86. Финансирование природоохранных мероприятий.
  • •Вопрос 87. Экологическое нормирование. Экологический мониторинг. Экологическая экспертиза.
  • •Вопрос 88. Экологические правонарушения. Ответственность за экологические правонарушения.
  • •Вопрос 89. Рациональное природопользование.
  • •Рациональное природопользование
  • •Вопрос 90. Глобальные экологические проблемы и меры по предотвращению экологической угрозы.
  • •Вопрос 91. Какие горючие газы являются компонентами газообразного топлива.
  • •Вопрос 92. Охарактеризуйте следующие газы и их влияние на человека: метан, пропан, бутан.
  • •Физические свойства
  • •Химические свойства
  • •Применение пропана
  • •Вопрос 93. Охарактеризуйте следующие газы и их влияние на человека: этилен, пропилен, сероводород.
  • •Вопрос 94. В результате чего образуется диоксид углерода и оксид углерода, их влияние на живые организмы.
  • •Вопрос 95. В результате чего образуется оксид азота, оксид серы и пары воды, их влияние на живые организмы.

Откуда берутся парниковые газы?

Парниковые газы присутствуют в атмосферах всех планет Солнечной системы. Высокая концентрация данных веществ становится причиной возникновения одноименного явления. Речь идет о парниковом эффекте. Для начала стоит сказать о его положительной стороне. Именно благодаря данному явлению, на Земле поддерживается оптимальная температура для зарождения и поддержания различных форм жизни. Тем не менее, когда концентрация парниковых газов завышена, можно говорить о серьезной экологической проблеме.
Изначально причиной появления парниковых газов были естественные природные процессы. Так, первые из них образовались в результате нагревания Земли солнечными лучами. Таким образом, часть тепловой энергии не уходила в космическое пространство, а отражалась газами. В результате создавался эффект нагревания, аналогичный тому, который происходит в теплицах.
В тот момент, когда климат Земли только формировался, значительная доля парниковых газов вырабатывалась вулканами. На тот момент водяной пар и углекислый газ в огромных количествах попадали в атмосферу и концентрировались в ней. Тогда парниковый эффект был настолько сильным, что Мировой океан буквально закипал. И лишь с появлением на планете зеленой биосферы (растений) ситуация стабилизировалась.
Сегодня проблема парникового эффекта особенно актуальна. Она во многом обусловлена развитием промышленности, а также безответственного отношения к природным ресурсам. Как ни странно, не только промышленное производство становится причиной ухудшения экологии. Даже такая безобидная на первый взгляд отрасль, как сельское хозяйство, также представляет собой опасность. Наиболее разрушительным является животноводство (а именно продукты жизнедеятельности крупного скота), а также использование химических удобрений. Также неблагоприятно сказывается на атмосфере выращивание риса.

Немного о парниковом эффекте

Для того чтобы в полной мере оценить разрушительную силу парникового эффекта, стоит обратить внимание на планету Венера. Из-за того что ее атмосфера практически полностью состоит из углекислого газа, температура воздуха у поверхности достигает 500 градусов. Учитывая выбросы парниковых газов в атмосферу Земли, ученые не исключают аналогичного развития событий в будущем. на данный же момент планету во многом спасают океаны, которые способствуют частичному очищению воздуха.
Парниковые газы образуют своего рода барьер, который нарушает циркуляцию тепла в атмосфере. Именно это и является причиной парникового эффекта. Данное явление сопровождается значительным повышением среднегодовой температуры воздуха, а также учащению природных катаклизмов (особенно в прибрежных зонах). Это чревато исчезновением многих видов животных и растений. На данный момент ситуация настолько серьезная, что решить проблему парникового эффекта полностью уже нельзя. Тем не менее еще возможно контролировать данный процесс и смягчать его последствия.

Возможные последствия

Парниковые газы в атмосфере — это основная причина изменения климата в сторону потепления. Последствия могут быть следующими:

  • Повышение влажности климата за счет увеличения количества осадков. Тем не менее это справедливо только для тех регионов, которые и так постоянно страдают от аномальных ливней и снегопадов. А в засушливых районах ситуация станет еще более плачевной, что приведет к дефициту питьевой воды.
  • Повышение уровня мирового океана. Это может привести к затоплению части территорий островных и прибрежных государств.
  • Исчезновение до 40 % видов растений и животных. Это прямое последствие изменения среды обитания и роста.
  • Уменьшение площади ледников, а также таяние снега на горных вершинах. Это опасно не только в плане исчезновения видов флоры и фауны, но также в плане схода лавин, селей и оползней.
  • Снижение производительности сельского хозяйства в странах с засушливым климатом. Там же, где условия можно считать умеренными, есть вероятность повышения урожайности, но это не спасет население от голода.
  • Нехватка питьевой воды, которая связана с иссушением подземных источников. Это явление может быть связано не только с перегреванием Земли, но также с таянием ледников.
  • Ухудшение состояния здоровья человека. Это связано не только с ухудшением качества воздуха и повышенной радиацией, но также и с сокращением количества продуктов питания.

Уменьшение выбросов парниковых газов

Не секрет, что состояние экологии Земли с каждым годом ухудшается. Расчет парниковых газов приводит к неутешительным выводам, а потому актуальным становится принятие мер по уменьшению количества выбросов. Этого можно достичь следующим образом:

  • повышение эффективности производства с целью сокращения количества используемых энергетических ресурсов;
  • охрана и увеличение количества растений, которые выступают поглотителями парниковых газов (рационализация ведения лесного хозяйства);
  • поощрение и поддержка развития форм сельского хозяйства, которые не наносят вреда окружающей среде;
  • разработка финансовых стимулов, а также снижение налогообложения для предприятий, которые работают в соответствии с концепцией экологической ответственности;
  • принятие мер по снижению выброса парниковых газов транспортными средствами;
  • увеличение штрафных санкций за загрязнение окружающей среды.

Все субъекты хозяйствования обязаны регулярно рассчитывать ущерб, нанесенный окружающей среде, и подавать отчетную документацию в соответствующие органы. Так, количественное определение выбросов парниковых газов осуществляется следующим образом:

  • выявление количества топлива, которое сжигается в течение года;
  • умножение полученного показателя на коэффициент выбросов по каждому виду газа;
  • объем выбросов каждого вещества пересчитывается в эквиваленте углекислого газа.

Источники выбросов, связанные со сжиганием топлива

Развитие научно-технического прогресса, безусловно, облегчает жизнь человеку, но наносит непоправимый вред окружающей среде. Во многом это связано со сжиганием топлива. В связи с этим источники парниковых газов могут быть следующими:

  • Энергетическая отрасль. Сюда входят электростанции, которые снабжают ресурсами промышленные предприятия и жилые объекты.
  • Промышленность и строительство. К данной категории относят предприятия всех отраслей. Учет осуществляется по топливу, использованному в процессе производства, а также на вспомогательные нужды.
  • Транспорт. Вредные вещества в атмосферу выделяют не только автомобили, но также воздушные средства передвижения, поезда, водный транспорт и трубопроводы. Учитывается только топливо, использованное на непосредственное перемещение грузов или пассажиров. Затраты энергии на внутренние хозяйственные перевозки сюда не относятся.
  • Коммунальный сектор. Это сфера услуг и ЖКХ. Значение имеет тот объем топлива, который был потрачен на обеспечение конечного энергопотребления.

Масса выбросов парниковых газов в России с каждым годом возрастает. Если рассмотреть структуру загрязнений по секторам, то картина будет следующей:

  • энергетическая отрасль — 71 %;
  • добыча топлива — 16 %;
  • промышленное производство и строительство — 13 %.

Таким образом, приоритетным направлением в работе по снижению выбросов вредных газов в атмосферу является именно энергетический сектор. Показатель использования ресурсов отечественными потребителями более чем в 2 раза превышает мировой показатель и в 3 раза — европейский. Потенциал снижения энергопотребления достигает 47 %.

Загрязнение парниковыми газами является глобальной проблемой и рассматривается на самом высоком международном уровне. Тем не менее она касается каждого отдельно взятого человека. Таким образом, должно присутствовать чувство персональной ответственности за состояние окружающей среды. Минимальный вклад каждого человека — это высадка зеленых насаждений, соблюдение правил противопожарной безопасности в лесах, а также использование в быту безопасных продуктов и товаров. Если говорить о будущих перспективах, речь может идти о переходе на электромобили и безопасное отопление жилых домов. Огромный вклад в сохранение окружающей среды призвана внести пропагандистская и просветительская деятельность.

ГАЗЫ ПРИРОДНЫЕ (а. natural gases; н. naturliche Gase; ф. gaz naturels; и. gases naturales) — совокупность газовых компонентов, встречающихся в различных состояниях: свободном (воздушная атмосфера Земли, газовые залежи и струи в пористых и трещиноватых горных породах и углях), растворённом (в гидросфере, подземных водах и нефтях), сорбированном породами и твёрдом виде (в виде кристаллогидратов).

Газы природные в основном горючие (углеводородные), они образуют в литосфере крупные скопления и являются объектами добычи (см. газы природные горючие). Доля остальных газов природных незначительна. По химическому составу газы природные — смесь углеводородов от CH4 до С5Н12, азота, углекислого газа, сероводорода, кислорода, водорода, окиси углерода, сернистого газа, аргона, ксенона, неона, гелия, криптона, паров ртути, летучих жирных кислот и др. Газовые компоненты представлены как отдельными атомами, так и сложными химическими соединениями.

Газы природные классифицируются по условиям нахождения в природе: газы атмосферы (смесь газов химического, биохимического и радиогенного происхождения: N2, О2 с примесями CO2, Н2, О3, благородных газов и др.); газы у земной поверхности (почвенные и подпочвенные, болотные, торфяные в основном биохимического происхождения: CO2, N2, О2, CH4 с примесями CO, NH3, Н2 и др.); газы осадочных пород (в нефти и каменном угле, смешанные, главным образом химического происхождения: CH4, N2, CO2, CH4 с примесями Н2 и др.); газы океанов и морей (биохимического, химического и радиогенного происхождения: CO2, N2 с примесями Н2, О2, NH3 и др.); газы метаморфических пород (химического происхождения: CO2, N2, Н2 с примесями CH4 и др.); газы магматических пород (химического происхождения: CO2, Н2 с примесями N2, Н2S, SO2 и др.); газы вулканические (химического происхождения: CO2, Н2, SO2, HCl, HF — с примесями N2, CO, NH3 и др.); газы космоса (реликтовые, диссипированные из внешних слоёв атмосфер звёзд или выброшенные при взрывах новых и сверхновых: Н2, He, ионизованный водород, примеси CO, радикалы CH, OH и др.). Количество газов природных в геосферах Земли возрастает в глубь планеты. Общая масса газов в осадочном слое 0,214•1015 т, в «гранитном» и базальтовом слое 7,8•1015 т и в верхней мантии 435•1015 т.

По происхождению газы природные различают: вулканического, биохимического, катагенетического (термокаталитического), метаморфического радиоактивного и воздушного происхождения. Второстепенное значение имеют газы ядерных реакций, газы радиохимического происхождения. Вулканические газы поступают из глубин Земли и связаны с дегазацией магмы. Биохимические газы (метан и его гомологи, сероводород, азот, двуокись углерода, кислород, водород и др.) образуются при бактериальном разложении органических веществ и реже при восстановлении минеральных солей. Эта группа газов образует скопления в самых верхних частях земной коры, значительная часть их выделяется в атмосферу.

Газы катагенетического происхождения — результат преобразования рассеянного органического вещества осадочных пород при их погружении на глубины и одновременном увеличении давления от 9,8 до 245 МПа (от 100 до 2500 атмосфер) и температуры (от 25-30 до 250-300°С). По своему составу газы преимущественно углеводородные с примесью углекислого газа, азота, сероводорода и др. При дальнейшем повышении давления и температуры породы дают начало газам метаморфизма, а при расплавлении пород — газам возрождения. Основной состав газов: двуокись углерода, пары воды; окись углерода, водород, сера, двуокись серы, азот, метан, редколетучие хлориды и инертные газы.

Радиоактивные газы возникают в процессе распада радиоактивных элементов. К ним относятся гелий (см. гелийсодержащие газы), недолговечные эманации радия, тория и др. Самостоятельных скоплений не образуют. Газы из атмосферы проникают вглубь земной коры главным образом в форме водных растворов. Они состоят из азота, кислорода и инертных газов (аргон, криптон и ксенон). По химическому составу выделяются 3 основные группы газов природных: углеводородные, углекислотные, сероводородные.

Особое свойство газов природных — большая способность мигрировать как в свободном, так и в водорастворённом состоянии — обуславливает смешивание газов природных разного происхождения и вместе с тем их широкое распространение в природе.

Газы природные из различных источников значительно отличаются по химическому составу. Основные компоненты газов в осадочных толщах, изученных главным образом в нефтегазоносных районах: CH4; в значительно меньшем количестве — N2, CO2, CO, N2S, Н2, SO2; группа инертных газов (He, Ar, Kr и др.). В ряде районов преобладающим является углекислый газ, встречаются зоны сероводородного обогащения (редко водородного), иногда — окись углерода. Инертные газы в качестве примеси распространены повсеместно, чаще всего в незначительных количествах.

пример, химический состав газов природных в газовых месторождениях (%): Медвежье (Западная Сибирь) — CH4 98,44, С2Н6 + высш. 0,15, CO2 0,34, Н2 0,004, N2 1,03, инертные газы 0,033; Астраханское (Нижнее Поволжье) — CH4 47,48, С2Н6 + высш. 6,49, CO2 21,59, Н2S 22,5, N2, инертные газы 1,98. Попутный газ нефтяных месторождений Западного Предкавказья содержит CH4 84,57, С2Н6 6,54, CO2 7,68, N2 1,2, Н2S 0,01, инертные газы до 0,52.

В районах активного современного вулканизма в составе газов природных выделяются также летучие соединения хлора, фтора, серы и др., поступающих в осадочную толщу из подкоровых глубин или образующихся в результате термических реакций. Например, химический состав газов из вулкана Этна представлен (%): CH4 1,0, CO2 28,8, CO 0,5, Н2 16,5, SO2 34,5, N2 и инертные газы 18,7. Большая масса газов природных находится в растворённом состоянии в подземных водах.

Газы природные, выделяясь из подземных вод, создают самостоятельные скопления (см. газовая залежь). Выделение газа в свободное состояние (образование залежей) обязано гравитационным силам и свойственно, прежде всего, углеводородным, углекисло-углеводородным и азотно-углеводородным газам.

сто углекислые и азотные скопления весьма редки. Известно свыше 10 тысяч чисто газовых месторождений (около 30 тысяч газовых залежей с объёмами от несколько тысяч м3 до трлн. м3). Запасы газа более 90% всех известных месторождений не превышают (каждое) 50 млрд. м3, и только 12 месторождений содержат запасы от 1 до 6 трлн. м3. В угленосных толщах в свободном и сорбированном состоянии находится 240-260 трлн. м3 газов природных. Количество газов, сорбированных рассеянным органическим веществом, 15•1016 м3. Газы природные в форме кристаллогидратов занимают около 20% поверхности материков и свыше 90% площади Мирового океана. В пределах ложа Мирового океана запасы кристаллогидратов 106 трлн. м3 (по В. Л. Царёву).

Из газов природных извлекают гелий, серу, ртуть, гомологи метана и др. В США и других странах извлекается CO2 (используется для закачки в нефтяной пласт с целью поддержания пластового давления); из газа месторождений Гронинген получают в промышленных масштабах ртуть. С использованием газов природных производится 80% стали, 85% чугуна, около 40% проката, 20% цветных металлов, 60% цемента, 85% удобрений.

Сжиженный газ и его роль

Среди веществ природного происхождения и технологического назначения выделяют такие, которые имеют высокую степень горючести и теплотворности. Для хранения, транспортировки и применения используются следующие виды сжиженного газа: метан, пропан, бутан, а также пропан-бутановые смеси.

Бутан (С4Н10) и пропан являются компонентами нефтяных газов. Первый сжижается при -1 – -0,5 С. Транспортировка и применение в морозную погоду чистого бутана не осуществляется по причине его замерзания. Температура сжижения для пропана (С3Н8) -41 – -42 С, критическое давление – 4,27 МПа.

Метан (СН4) – основная составляющая природного газа. Виды источника газа – залежи нефти, продукты биогенных процессов. Сжижение происходит с помощью поэтапного сжатия и снижения теплоты до -160 – -161 С. На каждом этапе сжимается в 5-10 раз.

Сжижение осуществляется на специальных заводах. Выпускаются пропан, бутан, а также их смесь для бытового и промышленного использования по отдельности. Метан применяется в промышленности и в виде топлива для транспорта. Последний также может выпускаться и в сжатом виде.

Сжатый газ и его роль

В последнее время популярность приобрел сжатый природный газ. Если для пропана и бутана применяется исключительно сжижение, то метан может выпускаться как в сжиженном, так и в сжатом состоянии. Газ в баллонах под высоким давлением в 20 МПа имеет ряд преимуществ перед общеизвестным сжиженным.

  1. Высокая скорость испарения, в том числе при отрицательных температурах воздуха, отсутствие негативных явлений накопления.
  2. Более низкий уровень токсичности.
  3. Полное сгорание, высокий КПД, отсутствие негативного влияния на оборудование и атмосферу.

Все чаще находит применение не только для грузовых, но и для легковых автомобилей, а также для котельного оборудования.

Газ – малозаметное, но незаменимое вещество для жизнедеятельности человека. Высокая теплотворная способность некоторых из них оправдывает широкое использование различных компонентов природного газа в качестве топлива для промышленности и транспорта.

Внимание, только СЕГОДНЯ!
Какие бывают газы в природе. Какие газы есть в атмосфере и что вы о них знаете. Применение природного газа

Парниковые газы. Справка

Диоксид карбона (углекислый газ) (СО2) – важнейший источник климатических изменений, на долю которого приходится, по оценкам, около 64% глобального потепления.

Основными источниками выброса углекислого газа в атмосферу являются производство, транспортировка, переработка и потребление ископаемого топлива (86%), сведение тропических лесов и другое сжигание биомассы (12%), и остальные источники (2%), например, производство цемента и окисление моноксида углерода. После выделения молекула двуокиси углерода совершает цикл через атмосферу и биоту и окончательно поглощается океаническими процессами или путем длительного накопления в наземных биологических хранилищах (т.е. поглощается растениями). Количество времени, при котором примерно 63% газа выводится из атмосферы, называется эффективным периодом пребывания. Оцениваемый эффективный период пребывания для углекислого газа колеблется в пределах от 50 до 200 лет.
Метан (СН4) имеет как природное, так и антропогенное происхождение. В последнем случае он образуется в результате производства топлива, пищеварительной ферментации (например, у скота), рисоводства, сведения лесов (главным образом, вследствие горения биомассы и распада избыточной органической субстанции). На долю метана приходится, по оценкам, примерно 20 % глобального потепления. Выбросы метана представляют собой значительной источник парниковых газов.

Закись азота (N2O) – третий по значимости парниковый газ Киотского протокола. Выделяется при производстве и применении минеральных удобрений, в химической промышленности, в сельском хозяйстве и т.п. На него приходится около 6 % глобального потепления.

Перфторуглероды – ПФУ (Perfluorocarbons – PFCs).Углеводородные соединения, в которых фтор частично замещает углерод. Основными источниками эмиссии этих газов являются производство алюминия, электроники и растворителей. При алюминиевой плавке выбросы ПФУ возникают в электрической дуге или при так называемых «анодных эффектах».

Гидрофторуглероды (ГФУ) – углеводородные соединения, в которых галогены частично замещают водород. Газы, созданные для замены озоноразрушающих веществ, имеют исключительно высокие ПГП (140 11700).

Гексафторид серы (SF6) – парниковый газ, использующийся в качестве электроизоляционного материала в электроэнергетике. Выбросы происходят при его производстве и использовании. Чрезвычайно долго сохраняется в атмосфере и является активным поглотителем инфракрасного излучения. Поэтому это соединение, даже при относительно небольших выбросах, обладает потенциальной возможностью влиять на климат в течение продолжительного времени в будущем.

Парниковый эффект от разных газов можно привести к общему знаменателю, выражающему то, насколько 1 тонна того или иного газа дает больший эффект, чем 1 тонна CO2. Для метана переводной коэффициент равен 21, для закиси азота 310, а для некоторых фторсодержащих газов несколько тысяч.

Рекомендованные направления политики и меры по сокращению выбросов парниковых газов, определенные в Киотском протоколе, включают в себя:

1. Повышение эффективности использования энергии в соответствующих секторах национальной экономики;
2. Охрана и повышение качества поглотителей и накопителей парниковых газов с учетом своих обязательств по соответствующим международным природоохранным соглашениям; содействие рациональным методам ведения лесного хозяйства, облесению и лесовозобновлению на устойчивой основе;
3. Поощрение устойчивых форм сельского хозяйства в свете соображений, связанных с изменением климата;
4. Содействие внедрению, проведение исследовательских работ, разработка и более широкое использование новых и возобновляемых видов энергии, технологий поглощения диоксида углерода и инновационных экологически безопасных технологий;
5. Постепенное сокращение или устранение рыночных диспропорций, фискальных стимулов, освобождения от налогов и пошлин, и субсидий, противоречащих цели Конвенции, во всех секторах – источниках выбросов парниковых газов, и применение рыночных инструментов;
6. Поощрение надлежащих реформ в соответствующих секторах в целях содействия осуществлению политики и мер, ограничивающих или сокращающих выбросы парниковых газов;
7. Меры по ограничению и/или сокращению выбросов парниковых газов на транспорте;
Ограничение и/или сокращение выбросов метана путем рекуперации и использования при удалении отходов, а также при производстве, транспортировке и распределении энергии.

Данные положения Протокола носят общий характер и предоставляют Сторонам возможность самостоятельно выбирать и реализовывать тот комплекс политики и мер, который будет в максимальной степени соответствовать национальным обстоятельствам и приоритетам.
Основной источник выбросов парниковых газов в России – энергетический сектор, на который приходится более 1/3 совокупных выбросов. Второе место занимает добыча угля, нефти и газа (16%), третье – промышленность и строительство (около 13%).

Таким образом, наибольший вклад в снижение выбросов парниковых газов в России может внести реализация огромного потенциала энергосбережения. В настоящее время энергоемкость экономики России превышает среднемировой показатель в 2,3 раза, а средний показатель для стран ЕС – в 3,2 раза. Потенциал энергосбережения в России оценивается в 39–47% текущего потребления энергии, и, в основном, он приходится на производство электроэнергии, передачу и распределение тепловой энергии, отрасли промышленности и непроизводительные энергопотери в зданиях.

Материал подготовлен на основе информации открытых источников

Углекислый газ

Источниками углекислого газа в атмосфере Земли являются вулканические выбросы, жизнедеятельность биосферы, деятельность человека. Антропогенными источниками являются: сжигание ископаемого топлива; сжигание биомассы, включая сведение лесов; некоторые промышленные процессы приводят к значительному выделению углекислоты (например, производство цемента). Основными потребителями углекислого газа являются растения, однако в состоянии равновесия большинство биоценозов за счет гниения биомассы производит приблизительно столько же углекислого газа, сколько и поглощает. Антропогенная эмиссия увеличивает концентрацию углекислого газа в атмосфере, что, предположительно, является главным фактором изменения климата. Углекислый газ является «долго живущим» в атмосфере. Согласно современным научным представлениям, возможность дальнейшего накапливания СО2 в атмосфере ограничена риском неприемлемых последствий для биосферы и человеческой цивилизации, в связи с чем его будущий эмиссионный бюджет является конечной величиной. Концентрация углекислого газа в атмосфере Земли по сравнению с доиндустриальной эпохой (1750 г.) в 2017 г. возросла с 277 до 405 ppm на 146 %.

Метан

Время жизни метана в атмосфере составляет примерно 10 лет. Сравнительно короткое время жизни в сочетании с большим парниковым потенциалом делает его кандидатом для смягчения последствий глобального потепления в ближайшей перспективе.

До последнего времени считалось, что парниковый эффект от метана в 25 раз сильнее, чем от углекислого газа. Однако теперь Межправительственная группа экспертов по изменению климата ООН (IPCC) утверждает, что «парниковый потенциал» метана еще опаснее, чем оценивалось раньше. Как следует из свежего доклада IPCC, который цитирует Die Welt, в расчете на 100 лет парниковая активность метана в 28 раза сильнее, чем у углекислого газа, а в 20-летней перспективе — в 84 раза.

Основными антропогенными источниками метана являются пищеварительная ферментация у скота, рисоводство, горение биомассы (в т. ч. сведение лесов). Как показали недавние исследования, быстрый рост концентрации метана в атмосфере происходил в первом тысячелетии нашей эры (предположительно в результате расширения сельхозпроизводства и скотоводства и выжигания лесов). В период с 1000 по 1700 годы концентрация метана упала на 40 %, но снова стала расти в последние столетия (предположительно в результате увеличения пахотных земель, пастбищ и выжигания лесов, использования древесины для отопления, увеличения поголовья домашнего скота, количества нечистот, выращивания риса). Некоторый вклад в поступление метана дают утечки при разработке месторождений каменного угля и природного газа, а также эмиссия метана в составе биогаза, образующегося на полигонах захоронения отходов.

Анализ пузырьков воздуха во льдах свидетельствует о том, что сейчас в атмосфере Земли больше метана, чем в любое время за последние 400000 лет. С 1750 года средняя глобальная атмосферная концентрация метана возросла на 257 процентов от приблизительно 723 до 1859 частей на миллиард по объему (ppbv) в 2017 году. За последнее десятилетие, хотя концентрация метана продолжала расти, скорость роста замедлилась. В конце 1970-х годов темпы роста составили около 20 ppbv в год. В 1980-х годов рост замедлился до 9-13 ppbv в год. В период с 1990 по 1998 наблюдался рост между 0 и 13 ppbv в год. Недавние исследования (Dlugokencky и др.) показывают устойчивую концентрацию 1751 ppbv между 1999 и 2002 гг.

Метан удаляется из атмосферы посредством нескольких процессов. Баланс между выбросами метана и процессами его удаления в конечном итоге определяет атмосферные концентрации и время пребывания метана в атмосфере. Доминирующим является окисление с помощью химической реакции с гидроксильными радикалами (ОН). Метан реагирует с ОН в тропосфере, производя СН3 и воду. Стратосферное окисление также играет некоторую (незначительную) роль в устранении метана из атмосферы. На эти две реакции с ОН приходится около 90 % удаления метана из атмосферы. Кроме реакции с ОН известно еще два процесса: микробиологическое поглощение метана в почвах и реакция метана с атомами хлора (Cl) на поверхности моря. Вклад этих процессов 7 % и менее 2 % соответственно.

Озон

Озон необходим для жизни, поскольку защищает Землю от жёсткого ультрафиолетового излучения Солнца.

Однако ученые различают стратосферный и тропосферный озон. Первый (так называемый озоновый слой) является постоянной и основной защитой от вредного излучения. Второй же считается вредным, так как может переноситься к поверхности Земли и ввиду своей токсичности вредить живым существам. Кроме того, повышение содержания именно тропосферного озона внесло вклад в рост парникового эффекта атмосферы. По наиболее широко распространенным научным оценкам, вклад озона составляет около 25 % от вклада СО2

Большая часть тропосферного озона образуется, когда оксиды азота (NOx), окись углерода (СО) и летучие органические соединения вступают в химические реакции в присутствии кислорода, водяных паров и солнечного света. Транспорт, промышленные выбросы, а также некоторые химические растворители являются основными источниками этих веществ в атмосфере. Метан, атмосферная концентрация которого значительно возросла в течение последнего столетия, также способствует образованию озона. Время жизни тропосферного озона составляет примерно 22 дня, основными механизмами его удаления являются связывание в почве, разложение под действием ультрафиолетовых лучей и реакции с радикалами OH и NO2.

Концентрации тропосферного озона отличаются высоким уровнем изменчивости и неравномерности в географическом распределении. Существует система мониторинга уровня тропосферного озона в США и Европе, основанная на спутниках и наземном наблюдении. Поскольку для образования озона требуется солнечный свет, высокие уровни озона наблюдаются обычно в периоды жаркой и солнечной погоды.

Увеличение концентрации озона вблизи поверхности имеет сильное негативное воздействие на растительность, повреждая листья и угнетая их фотосинтетический потенциал. В результате исторического процесса увеличения концентрации приземного озона, вероятно, была подавлена способность поверхности суши поглощать СО2 и поэтому увеличились темпы роста СО2 в XX веке. Ученые (Sitch и др. 2007) полагают, что это косвенное воздействие на климат увеличило почти вдвое вклад приземного озона в изменение климата. Снижение загрязнения нижней тропосферы озоном может компенсировать 1-2 десятилетия эмиссии СО2, при этом экономические издержки будут относительно невелики (Wallack и Ramanathan, 2009).

См. также

  • Геохимический цикл углерода
  • Киотский протокол
  • Гипотеза о метангидратном ружье
  • Сульфурилфторид
  • Адаптация к глобальному изменению климата
  1. Kiehl, J. T.; Kevin E. Trenberth. Earth’s Annual Global Mean Energy Budget (англ.) // Bulletin of the American Meteorological Society (англ.)русск. : journal. — 1997. — February (vol. 78, no. 2). — P. 197—208. — ISSN 0003-0007. — DOI:10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2.
  2. 1 2 3 4 5 6 Всемирная метеорологическая организация 22.11.2018 The state of the global climate
  3. Почему у российского газа нет экологичной альтернативы — BBC Russian
  4. IPCC (Intergovernmental Panel on Climate Change). IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (недоступная ссылка). Climate Change 2014: Synthesis Report.. IPCC (2015). Дата обращения 4 августа 2016. Архивировано 12 ноября 2018 года.
  5. Greenhouse Gas Online
  6. The IPCC Assessment Reports
  7. Изменение климата 2007. Обобщающий доклад Межправительственной группы экспертов по изменению климата, на русском (недоступная ссылка). Дата обращения 18 августа 2012. Архивировано 30 октября 2012 года.
  8. Stevenson et al. Multimodel ensemble simulations of present-day and near-future tropospheric ozone. American Geophysical Union (2006). Дата обращения 16 сентября 2006.
  9. The Air Quality Index (недоступная ссылка). Дата обращения 22 января 2010. Архивировано 24 ноября 2005 года.
  10. Live map of ground-level ozone
  11. The Copenhagen Diagnosis: Climate Science Report

Рекомендуемая литература

  • Рифкин Дж. Beyond Beef: The Rise and Fall of the Cattle Culture. — N. Y.: E. P. Dutton, 1992. — XI, 353 p. — ISBN 0-525-93420-0.
  • Статья о колебаниях концентрации углекислого газа
  • Point Carbon — аналитическая компания, специализирующаяся на предоставлении независимой оценки, прогнозов, и информации о торговле выбросами парниковых газов.
  • «Г И С — атмосфера» автоматическая система мониторинга качества атмосферного воздуха
В другом языковом разделе есть более полная статья Greenhouse gas (англ.). Вы можете помочь проекту, расширив текущую статью с помощью перевода.
При этом, для соблюдения правил атрибуции, следует установить шаблон {{переведённая статья}} на страницу обсуждения, либо указать ссылку на статью-источник в комментарии к правке.

Словари и энциклопедии

Нормативный контроль

GND: 4438735-0 · LCCN: sh90000985

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *