Вирусы бактерий бактериофаги

Вирусы бактерий бактериофаги

Пожиратели бактерий: как вирусы помогают нам выжить

Кристина Чернова | 26 октября 2016, 19:12

Ровно 38 лет назад Всемирная организация здравоохранения объявила, что вирус оспы, унесший в XX веке 500 миллионов человеческих жизней, уничтожен благодаря массовой вакцинации. В первую очередь слово «вирус» (от лат. «яд») мы ассоциируем со страшными смертоносными эпидемиями. Однако не все вирусы вредоносны: некоторые борются с опасными бактериями и помогают нашему организму функционировать.

Ученые затрудняются дать определение вирусам: одни считают, что это организмы, балансирующие на границе живого, другие уверены, что это комплексы органических молекул, которые взаимодействуют с живыми организмами. Так или иначе, вирусы могут проявить себя только в живой клетке.

У вирусов разные вкусовые предпочтения. Какие-то вирусы встраиваются в клетки нашего организма, разрушая их, а какие-то предпочитают поражать бактерии. Такие вирусы называют бактериофагами или просто фагами (от др.греч. «пожиратели»). Фаги, как и все вирусы — самые настоящие внутриклеточные паразиты.

Вирусы-антибиотики

Вирус-бактериофаг разрушает клетку

Строго говоря, бактериофаги это не вирусы, а вирионы . Они состоят из головки и хвоста. В головке содержится генетический материал — цепочки РНК или ДНК, которые содержат неактивный фермент. Они окружены белковой оболочкой — капсидом. Хвост — это белковая трубка, в которой генерируется энергия для передачи ДНК. С помощью этого хвоста фаг как бы делает укол бактерии, «впрыскивая» в нее собственный генетический материал.

Хвост фага с помощью ферментов, находящихся на его конце, растворяет оболочку клетки, сокращается и содержащаяся в головке ДНК попадает в клетку. Чужеродные гены полностью перестраивают клеточные процессы: клетка перестает синтезировать собственные ДНК, РНК и белки. Зато активизируется вирусный фермент транскриптаза, который пребывал до попадания в клетку в пассивном состоянии. Он запускает синтез вирусных ДНК. В конце концов, созревают новые фаговые частицы, которые ищут, какой бы бактерией еще поживиться.

Таким образом вирусы могут поражать все виды бактерий — в том числе и вредоносных для человека. Одной из очевидных областей использования фагов является антибактериальная терапия, которая в некоторых случаях способна заменить приём антибиотиков. Основным плюсом бактериофагов является то, что они способны вторгнуться туда, где присутствуют биологические мембраны, покрытые полисахаридами — туда антибиотики обычно не проникают.

Фаги способны поразить такие болезнетворные бактерии, как стрептококк, стафилококк, клебсиелла, шигелла. Тем самым они избавляют нас от дизентерии, пневмонии, бронхита, скарлатины, рожистых воспалений, цистита, сепсиса, конъюнктивита и других малоприятных заболеваний. В 2012 году жители Крымска, пострадавшего от наводнения, были привиты от дизентерии и других заболеваний вакциной с бактериофагами.

Вирусы помогают переваривать пищу

Наше тело — это очень сложная и динамичная экосистема, в которой обитают триллионы микроорганизмов. Они синтезируют для нас незаменимые аминокислоты и витамины, помогают переваривать клетчатку и белки, и даже создают противовоспалительные соединения. Бок о бок с бактериями живут бактериофаги. Но эти «соседи», в отличие от других фагов, не поражают и не убивают клетки бактерий, а участвуют в переносе генов. Возможно, между ними даже существует симбиоз — отношения взаимовыгодного «сотрудничества».

В исследовании группы ученых под руководством Джеффри Гордона, выяснилось, что вирусы, обитающие в желудочно-кишечном тракте человека, ведут себя более мирно по отношению к местной микрофлоре, чем в природных условиях. Они стремятся не разрушить бактерии, а просто встроиться в их геном. Некоторые вирусные гены кодируют белки, которые участвуют в синтезе аминокислот и углеводном обмене. Благодаря этому бактерии способны выполнять множество полезных для человека функций.

История

Английский бактериолог Фредерик Туорт в статье 1915 года описал инфекционную болезнь стафилококков, возбудитель которой проходил через фильтры, и его можно было переносить от одной колонии к другой.

Независимо от Фредерика Туорта французско-канадский микробиолог Феликс Д’Эрелль 3 сентября 1917 года сообщил об открытии бактериофагов. Наряду с этим известно, что российский микробиолог Николай Фёдорович Гамалея ещё в 1897 году впервые наблюдал явление лизиса бактерий (сибиреязвенной палочки) под влиянием перевиваемого агента.

После открытия явлений бактериофагии Д’Эрелль развил учение о том, что бактериофаги патогенных бактерий, являясь их паразитами, играют большую роль в патогенезе инфекций, обеспечивая выздоровление больного организма, а затем создания специфического иммунитета. Это положение привлекло к явлению бактериофагии внимание многих исследователей, которые предполагали найти в фагах важное средство борьбы с наиболее опасными инфекционными болезнями человека и животных.

Также Феликс Д’Эрелль выдвинул предположение, что бактериофаги имеют корпускулярную природу. Однако только после изобретения электронного микроскопа удалось увидеть и изучить ультраструктуру фагов. Долгое время представления о морфологии и основных особенностях фагов основывались на результатах изучения фагов группы Т — Т1, Т2,…, Т7, которые размножаются на Е. coli штамма B. Однако с каждым годом появлялись новые данные, касающиеся морфологии и структуры разнообразных фагов, что обусловило необходимость их морфологической классификации.

Роль бактериофагов в биосфере

Бактериофаг ϕpp2 патогенных вибрионов V. parahaemolyticus
и V. alginolyticus

Бактериофаги представляют собой наиболее многочисленную, широко распространённую в биосфере и, предположительно, наиболее эволюционно древнюю группу вирусов. Приблизительный размер популяции фагов составляет более 1030 фаговых частиц.

В природных условиях фаги встречаются в тех местах, где есть чувствительные к ним бактерии. Чем богаче тот или иной субстрат (почва, выделения человека и животных, вода и т. д.) микроорганизмами, тем в большем количестве в нём встречаются соответствующие фаги. Так, фаги, лизирующие клетки всех видов почвенных микроорганизмов, находятся в почвах. Особенно богаты фагами чернозёмы и почвы, в которые вносились органические удобрения.

Бактериофаги выполняют важную роль в контроле численности микробных популяций, в автолизе стареющих клеток, в переносе бактериальных генов, выступая в качестве векторных «систем».

Действительно, бактериофаги представляют собой один из основных подвижных генетических элементов. Посредством трансдукции они привносят в бактериальный геном новые гены. Было подсчитано, что за 1 секунду могут быть инфицированы 1024 бактерий. Это означает, что постоянный перенос генетического материала распределяется между бактериями, обитающими в сходных условиях.

Высокий уровень специализации, долгосрочное существование, способность быстро репродуцироваться в соответствующем хозяине способствует их сохранению в динамичном балансе среди широкого разнообразия видов бактерий в любой природной экосистеме. Когда подходящий хозяин отсутствует, многие фаги могут сохранять способность к инфицированию на протяжении десятилетий, если не будут уничтожены экстремальными веществами либо условиями внешней среды.

Строение бактериофагов

1 — головка, 2 — хвост, 3 — нуклеиновая кислота, 4 — капсид, 5 — «воротничок», 6 — белковый чехол хвоста, 7 — фибрилла хвоста, 8 — шипы, 9 — базальная пластинка

Бактериофаги различаются по химической структуре, типу нуклеиновой кислоты, морфологии и характеру взаимодействия с бактериями. По размеру бактериальные вирусы в сотни и тысячи раз меньше микробных клеток.

Типичная фаговая частица (вирион) состоит из головки и хвоста. Длина хвоста обычно в 2—4 раза больше диаметра головки. В головке содержится генетический материал — одноцепочечная или двуцепочечная РНК или ДНК с ферментом транскриптазой в неактивном состоянии, окружённая белковой или липопротеиновой оболочкой — капсидом, сохраняющим геном вне клетки.

Нуклеиновая кислота и капсид вместе составляют нуклеокапсид. Бактериофаги могут иметь икосаэдральный капсид, собранный из множества копий одного или двух специфичных белков. Обычно углы состоят из пентамеров белка, а опора каждой стороны из гексамеров того же или сходного белка. Более того, фаги по форме могут быть сферические, лимоновидные или плеоморфные.

Хвост, или отросток, представляет собой белковую трубку — продолжение белковой оболочки головки, в основании хвоста имеется АТФаза, которая регенерирует энергию для инъекции генетического материала. Существуют также бактериофаги с коротким отростком, не имеющие отростка и нитевидные.

Головка округлой, гексагональной или палочковидной формы диаметром 45—140 нм. Отросток толщиной 10—40 и длиной 100—200 нм. Одни из бактериофагов округлы, другие нитевидны, размером 8×800 нм. Длина нити нуклеиновой кислоты во много раз превышает размер головки, в которой находится в скрученном состоянии, и достигает 60—70 мкм. Отросток имеет вид полой трубки, окружённой чехлом, содержащим сократительные белки, подобные мышечным. У ряда вирусов чехол способен сокращаться, обнажая часть стержня. На конце отростка у многих бактериофагов имеется базальная пластинка, от которой отходят тонкие длинные нити, способствующие прикреплению фага к бактерии. Общее количество белка в частице фага — 50-60%, нуклеиновых кислот — 40-50%.

Фаги, как и все вирусы, являются абсолютными внутриклеточными паразитами. Хотя они содержат всю информацию для запуска собственной репродукции в соответствующем хозяине, у них нет механизмов для выработки энергии и рибосом для синтеза белка. Размер известных фаговых геномов варьирует от нескольких тысяч до 498 тысяч пар оснований (геном фага G, поражающего бацилл).

Систематика бактериофагов

Большое количество выделенных и изученных бактериофагов определяет необходимость их систематизации. Этим занимается Международный комитет по таксономии вирусов (ICTV). В настоящее время, согласно Международной классификации и номенклатуре вирусов, бактериофаги разделяют в зависимости от типа нуклеиновой кислоты и морфологии.

На данный момент выделяют девятнадцать семейств. Из них только два РНК-содержащих и только пять семейств имеют оболочку. Из семейств ДНК-содержащих вирусов только два семейства имеют одноцепочечные геномы. У девяти ДНК-содержащих семейств геном представлен кольцевой ДНК, а у других девяти — линейной. Девять семейств специфичны только для бактерий, остальные девять только для архей, а (Tectiviridae) инфицирует как бактерий, так и архей.

ICTV классификация вирусов бактерий и архей

Порядок Семейство Морфология Нуклеиновая кислота Пример
Caudovirales Myoviridae Без оболочки, сократительный хвост Линейная дцДНК Фаг Т4, фаг μ, PBSX, P1Puna-like, P2, I3, Bcep 1, Bcep 43, Bcep 78
Siphoviridae Без оболочки, несократительный хвост (длинный) Линейная дцДНК Фаг λ, фаг T5, phi, C2, L5, HK97, N15
Podoviridae Без оболочки, несократительный хвост (короткий) Линейная дцДНК Фаг T7, фаг T3, P22, P37
Ligamenvirales Lipothrixviridae В оболочке, палочкообразные Линейная дцДНК Вирус »Acidianus filamentous» 1
Rudiviridae Без оболочки, палочкообразные Линейная дцДНК Палочкообразный вирус »Sulfolobus islandicus» 1
Неизвестен Ampullaviridae В оболочке, бутылкообразные Линейная дцДНК
Bicaudaviridae Без оболочки, лемонообразные Кольцевая дцДНК
Clavaviridae Без оболочки, палочкообразные Кольцевая дцДНК
Corticoviridae Без оболочки, изометрические Кольцевая дцДНК
Cystoviridae В оболочке, сферические Сегментированная дцРНК
Fuselloviridae Без оболочки, лемонообразные Кольцевая дцДНК
Globuloviridae В оболочке, изометрические Линейная дцДНК
Guttaviridae Без оболочки, яйцевидные Кольцевая дцДНК
Inoviridae Без оболочки, нитевидные Кольцевая оцДНК M13
Leviviridae Без оболочки, изометрические Линейная оцРНК MS2, Qβ
Microviridae Без оболочки, изометрические Кольцевая оцДНК ΦX174
Plasmaviridae В оболочке, плеоморфные Кольцевая дцДНК
Tectiviridae Без оболочки, изометрические Линейная дцДНК

Взаимодействие бактериофага с бактериальными клетками

Адсорбция бактериофагов на поверхности бактериальной клетки

По характеру взаимодействия бактериофага с бактериальной клеткой различают вирулентные и умеренные фаги. Вирулентные фаги могут только увеличиваться в количестве посредством литического цикла. Процесс взаимодействия вирулентного бактериофага с клеткой складывается из нескольких стадий: адсорбции бактериофага на клетке, проникновения в клетку, биосинтеза компонентов фага и их сборки, выхода бактериофагов из клетки.

Первоначально бактериофаги прикрепляются к фагоспецифическим рецепторам на поверхности бактериальной клетки. Хвост фага с помощью ферментов, находящихся на его конце (в основном лизоцима), локально растворяет оболочку клетки, сокращается и содержащаяся в головке ДНК инъецируется в клетку, при этом белковая оболочка бактериофага остаётся снаружи. Инъецированная ДНК вызывает полную перестройку метаболизма клетки: прекращается синтез бактериальной ДНК, РНК и белков. ДНК бактериофага начинает транскрибироваться с помощью собственного фермента транскриптазы, который после попадания в бактериальную клетку активируется. Синтезируются сначала ранние, а затем поздние иРНК, которые поступают на рибосомы клетки-хозяина, где синтезируются ранние (ДНК-полимеразы, нуклеазы) и поздние (белки капсида и хвостового отростка, ферменты лизоцим, АТФаза и транскриптаза) белки бактериофага. Репликация ДНК бактериофага происходит по полуконсервативному механизму и осуществляется с участием собственных ДНК-полимераз. После синтеза поздних белков и завершения репликации ДНК наступает заключительный процесс — созревание фаговых частиц или соединение фаговой ДНК с белком оболочки и образование зрелых инфекционных фаговых частиц.

Продолжительность этого процесса может составлять от нескольких минут до нескольких часов. Затем происходит лизис клетки, и освобождаются новые зрелые бактериофаги. Иногда фаг инициирует лизирующий цикл, что приводит к лизису клетки и освобождению новых фагов. В качестве альтернативы фаг может инициировать лизогенный цикл, при котором он вместо репликации обратимо взаимодействует с генетической системой клетки-хозяина, интегрируясь в хромосому или сохраняясь в виде плазмиды. Таким образом, вирусный геном реплицируется синхронно с ДНК хозяина и делением клетки, а подобное состояние фага называется профагом. Бактерия, содержащая профаг, становится лизогенной до тех пор, пока при определённых условиях или спонтанно профаг не будет стимулирован на осуществление лизирующего цикла репликации. Переход от лизогении к лизису называется лизогенной индукцией или индукцией профага. На индукцию фага оказывает сильное воздействие состояние клетки хозяина предшествующее индукции, также как наличие питательных веществ и другие условия, имеющие место в момент индукции. Скудные условия для роста способствуют лизогенному пути, тогда как хорошие условия способствуют лизирующей реакции.

Очень важным свойством бактериофагов является их специфичность: бактериофаги лизируют культуры определённого вида, более того, существуют так называемые типовые бактериофаги, лизирующие варианты внутри вида, хотя встречаются поливалентные бактериофаги, которые паразитируют в бактериях разных видов.

Жизненный цикл

Умеренные и вирулентные бактериофаги на начальных этапах взаимодействия с бактериальной клеткой имеют одинаковый цикл.

  • Адсорбция бактериофага на фагоспецифических рецепторах клетки.
  • Инъекция фаговой нуклеиновой кислоты в клетку хозяина.
  • Совместная репликация фаговой и бактериальной нуклеиновой кислоты.
  • Деление клетки.
  • Далее бактериофаг может развиваться по двум моделям: лизогенный либо литический путь. Умеренные бактериофаги после деления клетки находятся в состоянии профага (лизогенный путь). Вирулентные бактериофаги развиваются по литической модели:
  • Нуклеиновая кислота фага направляет синтез ферментов фага, используя для этого белоксинтезирующий аппарат бактерии. Фаг тем или иным способом инактивирует ДНК и РНК хозяина, а ферменты фага совсем расщепляют её; РНК фага «подчиняет» себе клеточный аппарат синтеза белка.
  • Нуклеиновая кислота фага реплицируется и направляет синтез новых белков оболочки. Образуются новые частицы фага в результате спонтанной самосборки белковой оболочки (капсид) вокруг фаговой нуклеиновой кислоты; под контролем РНК фага синтезируется лизоцим.
  • Лизис клетки: клетка лопается под воздействием лизоцима; высвобождается около 200—1000 новых фагов; фаги инфицируют другие бактерии.

Применение

В медицине

Одной из областей использования бактериофагов является антибактериальная терапия, альтернативная приёму антибиотиков. Например, применяются бактериофаги: стрептококковый, стафилококковый, клебсиеллёзный, дизентерийный поливалентный, пиобактериофаг, коли, протейный и колипротейный и другие. В России зарегистрировано и применяется 13 медицинских препаратов на основе фагов. В настоящее время их применяют для лечения бактериальных инфекций, которые не чувствительны к традиционному лечению антибиотиками, особенно в республике Грузия. Обычно, применение бактериофагов сопровождается большим, чем антибиотики, успехом там, где присутствуют биологические мембраны, покрытые полисахаридами, через которые антибиотики обычно не проникают. В настоящее время терапевтическое применение бактериофагов не получило одобрения на Западе, хотя и применяются фаги для уничтожения бактерий, вызывающих пищевые отравления, таких, как листерии. В многолетнем опыте в объёме крупного города и сельской местности доказана необычайно высокая лечебная и профилактическая эффективность дизентерийного бактериофага (П. М. Лернер, 2010). В России терапевтические фаговые препараты делают давно, фагами лечили ещё до антибиотиков. В последние годы фаги широко использовали после наводнений в Крымске и Хабаровске, чтобы предотвратить дизентерию.

В биологии

Бактериофаги применяются в генной инженерии в качестве векторов, переносящих участки ДНК, возможна также естественная передача генов между бактериями посредством некоторых фагов (трансдукция).

Фаговые векторы обычно создают на базе умеренного бактериофага λ, содержащего двухцепочечную линейную молекулу ДНК. Левое и правое плечи фага имеют все гены, необходимые для литического цикла (репликации, размножения). Средняя часть генома бактериофага λ (содержит гены, контролирующие лизогению, то есть его интеграцию в ДНК бактериальной клетки) не существенна для его размножения и составляет примерно 25 тысяч пар нуклеотидов. Данная часть может быть заменена на чужеродный фрагмент ДНК. Такие модифицированные фаги проходят литический цикл, но лизогения не происходит. Векторы на основе бактериофага λ используют для клонирования фрагментов ДНК эукариот (то есть более крупных генов) размером до 23 тысяч пар нуклеотидов (т. п. н.). Причём, фаги без вставок — менее 38 т. п. н. или, напротив, со слишком большими вставками — более 52 т. п. н. не развиваются и не поражают бактерии.

Бактериофаги M13, фаг Т4, T7 и фаг λ используют для изучения белок-белковых, белок-пептидных и ДНК-белковых взаимодействий методом фагового дисплея.

Поскольку размножение бактериофага возможно только в живых клетках, бактериофаги могут быть использованы для определения жизнеспособности бактерий. Данное направление имеет большие перспективы, поскольку, одним из основных вопросов при разных биотехнологических процессах является определение жизнеспособности используемых культур. С помощью метода электрооптического анализа клеточных суспензий была показана возможность изучения этапов взаимодействия фаг-микробная клетка.

> См. также

  • Цианофаги
  • Вольман, Евгений Маркович

Примечания

  1. 1 2 3 Сергей Головин Бактериофаги: убийцы в роли спасителей // Наука и жизнь. — 2017. — № 6. — С. 26-33
  2. Félix d’Hérelles. Sur un microbe invisible antagoniste des bacilles dysentériques (фр.) // Comptes rendus Acad Sci Paris. : magazine. — 1917. — Vol. 165. — P. 373—375. Архивировано 4 декабря 2010 года.
  3. Вирусы бактерий
  4. Бактериофаг (недоступная ссылка). Дата обращения 24 июня 2011. Архивировано 21 ноября 2013 года.
  5. Ackermann H.-W. // Res. Microbiol., 2003. — V. 154. — P. 245—251
  6. Hendrix R.W. // Theor. Popul. Biol., 2002. — V. 61. — P. 471—480
  7. Suttle C.A. (September 2005), Vuiruses in the sea. Nature 437:356-361.
  8. Шестаков С. В. Как происходит и чем лимитируется горизонтальный перенос генов у бактерий. Экологическая генетика 2007. — Т. 5. — № 2. — C. 12-24.
  9. 1 2 Tettelin H., Masignani V., Cieslewicz M. J., Donati C., Medini D., Ward N. L., Angiuoli S. V., Crabtree J., Jones A. L., Durkin A. S., Deboy R. T., Davidsen T. M., Mora M., Scarselli M., Margarit y Ros I., Peterson J. D., Hauser C. R., Sundaram J. P., Nelson W. C., Madupu R., Brinkac L. M., Dodson R. J., Rosovitz M. J., Sullivan S. A., Daugherty S. C., Haft D. H., Selengut J., Gwinn M. L., Zhou L., Zafar N., Khouri H., Radune D., Dimitrov G., Watkins K., O’Connor K. J., Smith S., Utterback T. R., White O., Rubens C. E., Grandi G., Madoff L. C., Kasper D. L., Telford J. L.,. Wessels M. R, Rappuoli R., Fraser C. M. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial «pan-genome.» Proc. Natl. Acad. Sci. USA 2005. 102: 13950-13955 (недоступная ссылка). Дата обращения 24 июня 2011. Архивировано 29 декабря 2010 года.
  10. 1 2 3 4 5 Guttman B., Raya R., Kutter E. Basic Phage Biology, in Bacteriophages: Biology and Applications, (Kutter E. and Sulakvelidze A., ed.), CRP Press, 2005 FL. — P. 29-66.
  11. Ковалёва Е. Н. Создание биопрепарата на основе выделенных и изученных бактериофагов Enterococcus faecalis: Дис. … канд. биол. наук. — Саратов, 2009. — 151 с.
  12. Ackermann H.-W. // Res. Microbiol., 2003. — V. 154. — P. 245—251.
  13. 1 2 3 4 Ожерельева Н. Г. Краткая Медицинская Энциклопедия, М.: изд-во «Советская Энциклопедия», 1989. — издание второе.
  14. Бактериофаги // Большая советская энциклопедия : / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  15. Molecular Medical Microbiology / Yi-Wei Tang, Max Sussman, Dongyou Liu, Ian Poxton, Joseph Schwartzman. — 2 ed. — Academic Press, 2014. — Vol. 1. — P. 579. — 2216 p. — ISBN 9780123977632.
  16. Bacillus phage G, complete genome. GenBank.
  17. Virus Taxonomy. Classification and Nomenclature of Viruses. Seventh Report of the International Committee on Taxonomy of Viruses / Edited by M.H.V. van Regenmontel et al. — San Diego: Academic Press, 2000. — P. 43-53, 64-129.
  18. Mc Grath S and van Sinderen D (editors). Bacteriophage: Genetics and Molecular Biology. — 1st. — Caister Academic Press, 2007. — ISBN .
  19. Raya R.R., Hébert E.M. Isolation of phage via induction of lysogens. Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interaction (Martha R.J. Clokie, Andrew M. Kropinski (eds.), 2009. — V. 501. — P. 23-32.
  20. 1 2 Микробиология: учеб. пособие / В. В. Лысак. — Минск: БГУ, 2007. — 430 с.
  21. Адамс М. Бактериофаги / М. Адамс. — М.: Медгиз, 1961. — 521 с.
  22. Гольдфарб Д. М., Бактериофагия / Д. М. Гольдфарб. — М.: Медгиз, 1961. — 299 с.
  23. BBC Horizon: Phage — The Virus that Cures 1997-10-09
  24. Parfitt T. Georgia: an unlikely stronghold for bacteriophage therapy (англ.) // The Lancet : journal. — Elsevier, 2005. — Vol. 365, no. 9478. — P. 2166—2167. — DOI:10.1016/S0140-6736(05)66759-1. — PMID 15986542.
  25. Thiel, Karl. Old dogma, new tricks—21st Century phage therapy (англ.) // Nature Biotechnology. — London UK: Nature Publishing Group, 2004. — January (vol. 22, no. 1). — P. 31—36. — DOI:10.1038/nbt0104-31. — PMID 14704699.
  26. Aguita, Maria. Combatting Bacterial Infection, LabNews.co.uk. Архивировано 28 февраля 2009 года. Дата обращения 5 мая 2009.
  27. Pirisi A. Phage therapy—advantages over antibiotics? (англ.) // The Lancet. — Elsevier, 2000. — Vol. 356, no. 9239. — P. 1418. — DOI:10.1016/S0140-6736(05)74059-9. — PMID 11052592.
  28. Все юные жители Крымска привиты от гепатита A | РИА ФедералПресс
  29. Щелкунов С. Н. Генетическая инженерия / С. Н. Щелкунов. — Новосибирск: Сиб. унив. изд-во, 2004. — 496 с.
  30. Guliy O.I., Bunin V.D., O’Neil D., Ivnitski D., Ignatov O.V. A new electro-optical approach to rapid assay of cell viability // Biosensors and Bioelectronics. 2007. V. 23. P. 583—587.

Вирусы и фаги.

Вирусы (от лат. Virus — яд) — это особая группа микроорганизмов меньших размеров и более простой организации, чем бактерии. Вирусы не имеют клеточной структуры, величина их измеряется нанометрами. Вирусы открыты русским ботаником Д. И. Ивановским в 1892 г. при изучении мозаичной болезни листьев табака, которая причиняла большой ущерб табачным плантациям Крыма. Открытие Д. И. Ивановского заложило основу новой науки — вирусологии.

Вирусы — внутриклеточные паразиты, вызывающие многие болезни человека (оспу, грипп, бешенство, корь, полиомиелит и др.), животных (ящур, чуму крупного рогатого скота) и растений («мозаики» и другого вида заболевания полевых и огородных культур).

Вирусы разнообразны по форме, размерам и химическому составу. Большинство из них имеет палочковидную или сферическую форму. Некоторые вирусы состоят только из белка и одной нуклеиновой кислоты — ДНК или РНК, другие содержат еще и липиды, полисахариды. Вирусная частица называется вирионом. Нуклеиновая кислота (в виде спирали) находится внутри вириона, снаружи он покрыт белковой оболочкой (капсидом), состоящей из отдельных морфологических субъединиц (капсомеров). Вирусы выращивают на живых клетках или культуре тканей, так как на искусственных питательных средах они, как правило, не развиваются.

Вирусы обладают разной устойчивостью к внешним воздействиям. Многие инактивируются при 60″С до 10 мин, другие выдерживают температуру 90°С до 10 мин. Вирусы довольно легко переносят высушивание и низкие температуры, но мало устойчивы ко многим антисептикам, ультрафиолетовым лучам, радиоактивным излучениям.

Фаги — это вирусы микроорганизмов, вызывающие гибель — распад (лизис) их клеток. Вирусы бактерий называются бактериофагами или просто фагами, актиномицетов — актинофагами, вирусы грибов — микофагами, сине-зеленых водорослей (цианобактерий) — цианофагами.

Впервые лизис сибиреязвенных бактерий наблюдал Н. Ф. Гамалея в 1898 г. Д. Эррель в 1917 г. установил явление лизиса у бактерий дизентерии, им впервые был выделен и описан бактериофаг («пожиратель») бактерий.

Морфология фага изучена с применением электронного микроскопа. Большинство фагов состоит из головки и отростка. Головка фага может иметь разную форму, чаще всего это многогранник, покрытый белковой оболочкой (капсидом). Внутри капсида расположена нуклеиновая кислота, чаще всего одна — ДНК или РНК. Отросток фага имеет внутренний полый стержень, по каналу которого ДНК фага переходит в клетку хозяина. Стержень снаружи покрыт чехлом, способным к сокращению. Стержень и чехол отростка состоят из белковых субъединиц. У некоторых фагов отросток заканчивается базальной пластинкой, которая имеет выступы (зубцы) и нити.

Фаги могут быть и нитевидной формы, могут состоять из одной головки, а могут быть с аналогами отростка (очень коротким отростком). Некоторые фаги имеют длинные отростки с несокращающимся или сокращающимся чехлом.

Фаги широко распространены в природе. Многие из них обладают специфичностью — могут воздействовать на определенный вид или группу родственных видов микроорганизмов.

Взаимодействие фага с микробной клеткой происходит в несколько фаз. Сначала фаг адсорбируется восприимчивой клеткой, затем под действием фермента фага (сходного с лизоцимом) в стенке микробной клетки образуется отверстие, через которое в клетку проникает только нуклеиновая кислота; пустая белковая оболочка головки и отростка остается снаружи клетки, а затем разрушается.

Под влиянием попавшей в клетку нуклеиновой кислоты фага перестраиваются все обменные процессы микробной клетки на синтез фаговых частиц: синтезируются фаговая нуклеиновая кислота и белковые субъединицы оболочек. Вначале формируются раздельно головки и отростки, которые затем объединяются в зрелые фаговые частицы. Через определенное время клетка хозяина погибает, разрушается и фаги выходят наружу.

Явление фаголизиса (растворение культур микроорганизмов) наблюдается на производствах, связанных с использованием микроорганизмов. Развитие фагов в культурах промышленных микроорганизмов приводит к тому, что клетки культуры лизируются, не успев синтезировать необходимые вещества. Это наносит предприятиям большой экономический ущерб. Так нередко лизируются молочно-кислые бактерии, входящие в состав заквасок для кисломолочных продуктов. Такие закваски не пригодны для употребления.

Бактериофаги, лизирующие зараженные ими бактерии, называют вирулентными. Некоторые фаги, однако, инфицируют бактерии, но не вызывают их лизиса; такие фаги называются умеренными. В клетке-бактерии — хозяина они не размножаются, но при делении бактерии передаются дочерним клеткам.

Фаги применяются в медицине для лечения и профилактики некоторых заболеваний, например дизентерии, холеры. Фаги исключительно удобны как модели для решения вопросов общебиологических, молекулярной биологии, генетики, медицины.

База знаний

2.4.3. Жизненный цикл бактериофага

Рис. 2.22. Жизненный цикл бактериофага.

Жизненный цикл типичного бактериофага показан на рис. 2.22. E. coli, являющаяся типичной клеткой-хозяином, может быть атакована по меньшей мере семью штаммами Т-фагов (от Т1 до Т7). Т-четный фаг (например, Т2-фаг) показан на рис. 2.19, А и Б и 2.20.

Рис. 2.19. А. Строение бактериофага Т2. Б. Электронная микрофотография бактериофага, полученная методом негативного контрастирования.

Рис. 2.20. Несколько упрощенных схематических изображений вирусов, отражающих различие их симметрии и размеров. Фаг Т2 показан с нитями хвостового отростка, которые фаг выпускает перед тем как инфицировать клетку; у фага λ нитей хвостового отростка нет.

Жизненные циклы большинства фагов в основном схожи. Однако у одних из них жизненный цикл протекает без перерывов; в таком случае говорят о литическом цикле развития. У других фагов, таких как фаг лямбда, фаговая ДНК, оказавшись в клетке, встраивается в ДНК клетки-хозяина и никак не проявляется на протяжении многих поколений. При каждом делении клетки фаговая ДНК копируется вместе с клеточной ДНК. Такой неактивный фаг называют профагом. Но в какой-то момент профаг вновь активируется: высвобождается из клеточной ДНК и завершает свой жизненный цикл, вызывая гибель клетки-хозяина обычным путем. Такие фаги называют лизогенизирующими, а клетку с встроенным в нее профагом – лизогенной.

2.4.4. Вирусы как возбудители болезней

Вирусы способны поражать и эукариотические клетки; при этом, как и в случае с прокариотическими клетками, каждый вирус имеет собственного специфического хозяина. ВТМ, например, инфицирует только растения табака. В целом вирусы вызывают множество различных заболеваний у растений, животных и грибов. К вирусным болезням человека относятся корь, краснуха, ветряная оспа, грипп, герпес и СПИД.

Вирусы вызывают много различных болезней у организмов почти всех других видов.

2.4.5. Строение и жизненный цикл ретровируса на примере ВИЧ

Особый интерес среди вирусных болезней вызывает СПИД (синдром приобретенного иммунодефицита человека), поскольку это относительно новая болезнь. Впервые сообщение о ней появилось в СШАв 1981 г. СПИД вызывается вирусом иммунодефицита человека, или сокращенно ВИЧ. Интерес к этому вирусу объясняется еще и тем обстоятельством, что ВИЧ относится к группе вирусов, получивших название ретровирусов – название, отражающее следующую особенность этого вируса. Обычно перенос генетической информации идет в направлении ДНК–> РНК, т.е. информация, закодированная в определенном отрезке ДНК (гене) транскрибируется, т.е. считывается, с образованием соответствующей РНК. У ретровирусов же, у которых наследуемым генетическим материалом служит РНК, происходит обратная транскрипция, т.е. генетическая информация считывается в обратном направлении: от РНК к ДНК. Фермент, участвующий в обратной транскрипции, называется обратной транскриптазой. Он широко используется в генетической инженерии (гл. 25).

Рис. 2.23. Жизненный цикл вируса иммунодефицита человека (ВИЧ).

  1. Вирус приближается к Т4-лимфоциту
  2. Вирусный гликопротеин прикрепляется к рецепторному белку, находящемуся на плазматической мембране
  3. Вирус проникает в клетку путем эндоцитоза
  4. Вирусная РНК высвобождается в цитоплазму вместе с ферментом обратной транскриптазой
  5. В результате транскрипции одноцепочечной вирусной РНК при участии обратной транскриптазы образуется двухцепочечная ДНК
  6. Образовавшаяся ДНК проникает в клеточное ядро и встраивается в ДНК клетки-хозяина. При каждом клеточном делении одновременно с копированием клеточной ДНК происходит копирование и встроенной вирусной ДНК. В результате число инфицированных клеток увеличивается
  7. По истечении неактивного периода, называемого латентным периодом, который длится примерно 5 лет, вирус вновь активируется. Факторы, индуцирующие превращение латентного вируса в активный, не установлены
  8. С использованием белоксинтезирующего аппарата клетки-хозяина образуется новая РНК (транскрипция) и синтезируются вирусные белки
  9. Сборка новых вирусных частиц
  10. Вирусные белки отпочковываются от клетки путем экзоцитоза
  11. В конечном счете инфицирование клетки вирусом приводит к ее гибели

На рис. 2.21 показано строение ВИЧ, а на рис. 2.23 приведена схема его жизненного цикла (см. также рис. 2.24). ВИЧ инфицирует и разрушает лейкоциты определенной группы, называемые Т-хелперными лимфоцитами, подавляя в результате активность иммунной системы. Вызываемая этим вирусом болезнь (СПИД) рассматривается в гл. 15.

Рис. 2.24. ВИЧ, покидающий инфицированную клетку.

Предыдущая | Оглавление | Следующая

 БАКТЕРИОФАГИ

Бактериофаги – вирусы бактерий. Они состоят из головки, имеющей кубическую симметрию, и отростка или «хвоста» со спиральной симметрией. На конце отростка имеется Базальная пластина с шипами и щупальцами, предназначенными для закрепления на стенке бактериальной клетки. Нуклеиновая кислота (чаще всего ДНК) находится в полиэдрической головке. Выделяют два типа жизнедеятельности бактериофагов: Умеренный и вирулентный.

Жизненный цикл Вирулентного бактериофага состоит из следующих этапов:

1.Абсорбция – закрепление на стенке бактерии с помощью шипов и щупалец базальной пластины.

2. Инъекция – впрыскивание фаговой ДНК внутрь бактериальной клетки. Чехол отростка сокращается, давление внутри фаговой частицы увеличивается и ДНК инъецируется в бактериальную клетку, а капсид остается за пределами клетки.

3. Встраивание в нуклеоид клетки-Хозяина.

4. Многократное самокопирование фаговой ДНК.

5. Регенерация капсида.

6. Созревание (сборка) фаговых частиц Может происходить спонтанно, без участия специальных факторов в результате агрегации НК и капсидных белков.

7. Лизис клетки и выход бактериофагов происходит тогда, когда

Концентрация фагов в клетке достигает критического уровня,

Например, когда накапливается 10 000 вирусных частиц на клетку .

Такой цикл еще называют Литическим.

Умеренные бактериофаги В жизненном цикле проходят три первых этапа (абсорбция, инъекция, встраивание в нуклеоид), а затем реплицируются синхронно с хромосомой бактерии. Это явление называется Лизогенией. Через несколько поколений под влиянием условий внешней среды (УФ, рентгеновское излучение) вирусный геном может перейти из умеренной формы в вирулентную и вызвать лизис всех инфицированных клеток. В другом случае ДНК бактериофага может выйти из состава нуклеоида и покинуть клетку, «прихватив с собой» часть ДНК хозяина. Эта генетическая информация переносится фагом в другую бактериальную клетку. Это явление называется Трансдукцией.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *