Закон в биологии

Закон в биологии

Теории, законы и закономерности биологии для ЕГЭ 2019

Теория

Клеточная теория (Т. Шванн, М. Шлейден, Р. Вирхов).
Все живые существа — растения, животные и одноклеточные организмы — состоят из клеток и их производных. Клетка не только единица строения, но и единица развития всех живых организмов. Для всех клеток характерно сходство в химическом составе и обмене веществ. Активность организма слагается из активности и взаимодействия составляющих его самостоятельных клеточных единиц. Все живые клетки возникают из живых клеток.

Хромосомная теория наследственности (Т. Морган).
Хромосомы с локализованными в них генами — основные материальные носители наследственности.

  • Гены находятся в хромосомах и в пределах одной хромосомы образуют одну группу сцепления. Число групп сцепления равно гаплоидному числу хромосом.
  • В хромосоме гены расположены линейно.
  • В мейозе между гомологичными хромосомами может произойти кроссинговер, частота которого пропорциональна расстоянию между генами.

Теория возникновения жизни на Земле (А. И. Опарин, Дж. Холдейн, С. Фоке, С. Миллер, Г. Меллер).
Жизнь на Земле возникла абиогенным путем.

  1. Органические вещества сформировались из неорганических под действием физических факторов среды.
  2. Они взаимодействовали, образуя все более сложные вещества, в результате чего возникли ферменты и самовоспроизводящиеся ферментные системы — свободные гены.
  3. Свободные гены приобрели разнообразие и стали соединяться.
  4. Вокруг них образовались белково-липидные мембраны.
  5. Из гетеротрофных организмов развились автотрофные.

Теория эволюции (Ч. Дарвин).
Все существующие ныне многочисленные формы растений и животных произошли от существовавших ранее более простых организмов путем постепенных изменений, накапливавшихся в последовательных поколениях.

Теория естественного отбора (Ч. Дарвин).
В борьбе за существование в естественных условиях выживают наиболее приспособленные. Естественным отбором сохраняются любые жизненно важные признаки, действующие на пользу организма и вида в целом, в результате чего образуются новые формы и виды.

Мембранная теория (М. Траубе, В.Пфеффер, Ч. Овертон).
Проистекает из клеточной теории. Объясняет свойства клетки (проницаемость, способность избирательно аккумулировать вещества, способность сохранять осмотическую стабильность, и способность генерировать электрические потенциалы) свойствами ее плазматической мембраны, представленной двойным слоем фосфолипидов, пронизанных частично или полностью белками, с «натриевыми», «калиевыми» и другими (около 30 разновидностей) каналами. В настоящее время постепенно признается несостоятельной.

Фазовая теория (Б. Мур, М. Фишер, В. Лепешкин, Д.Н.Насонов, А.С.Трошин, Г. Линг)
Проистекает из теории саркоды Дюжардена. Является альтернативой общепринятой мембранной теории. Представляет мембрану как границу из поляризованной ориентированной воды и на основании этого объясняет свойства клетки, рассматривая саму клетку как протоплазму — коллоидную систему, фазы которой образованы упорядоченной совокупностью молекул белка, воды и ионов, объединяемых в единое целое возможностью взаимопереходов.

Законы

  • Биогенетический закон (Ф. Мюллер, Э. Геккель, А. Н. Северцов). Онтогенез организма есть краткое повторение зародышевых стадий предков. В онтогенезе закладываются новые пути их исторического развития — филогенеза.
  • Закон зародышевого сходства (К. Бэр). На ранних стадиях зародыши всех позвоночных сходны между собой, и более развитые формы проходят этапы развития более примитивных форм.
  • Закон необратимости эволюции (Л. Долло). Организм (популяция, вид) не может вернуться к прежнему состоянию, уже осуществленному в ряду его предков.
  • Закон эволюционного развития (Ч. Дарвин). Естественный отбор на основе наследственной изменчивости является основной движущей силой эволюции органического мира.
  • Законы наследования (Г. Мендель, 1865 г.):
    1. Закон единообразия гибридов первого поколения (первый закон Менделя) — при моногибридном скрещивании у гибридов первого поколения проявляются только доминантные признаки — оно фенотипически единообразно.
    2. Закон расщепления (второй закон Менделя) — при самоопылении гибридов первого поколения в потомстве происходит расщепление признаков в отношении 3:1, при этом образуются две фенотипические группы — доминантная и рецессивная.
    3. Закон независимого наследования (третий закон Менделя) — при дигибридном скрещивании у гибридов каждая пара признаков наследуется независимо от других и дает с ними разные сочетания. Образуются четыре фенотипические группы, характеризующиеся отношением 9:3:3:1.

Гипотеза частоты гамет (Г. Мендель, 1865 г.): находящиеся в каждом организме пары альтернативных признаков не смешиваются при образовании гамет и по одному от каждой пары переходят в них в чистом виде.

  • Закон сцепленного наследования (Т. Морган, 1911 г.) Сцепленные гены, локализованные в одной хромосоме, наследуются совместно и не обнаруживают независимого распределения
  • Закон гомологических рядов наследственной изменчивости (Н. И. Вавилов, 1920 г.) Генетически близкие виды и роды характеризуются сходными рядами наследственной изменчивости.
  • Закон генетического равновесия в популяциях (Г. Харди, В. Вайнберг). В неограниченно большой популяции при отсутствии факторов, изменяющих концентрацию генов, при свободном скрещивании особей, отсутствии отбора и мутирования данных генов и отсутствии миграции численные соотношения генотипов АА, аа, Аа из поколения в поколение остаются постоянными. Частоты членов пары аллельных генов в популяциях распределяются в соответствии с разложением бинома Ньютона (рА + qа)2.
  • Закон сохранения энергии (И. Р. Майер, Д. Джоуль, Г. Гельмгольц). Энергия не создается и не исчезает, а лишь переходит из одной формы в другую. При переходе материи из одной формы в другую изменение ее энергии строго соответствует возрастанию или убыванию энергии взаимодействующих с ней тел.
  • Закон минимума (Ю. Либих). Выносливость организма определяется самым слабым звеном в цепи его экологических потребностей, т. е. фактором минимума.
  • Правило взаимодействия факторов: организм способен заменить дефицитное вещество или другой действующий фактор иным функционально близким веществом или фактором.
  • Закон биогенной миграции атомов (В. И. Вернадский). Миграция химических элементов на земной поверхности и в биосфере в целом осуществляется или при непосредственном участии живого вещества (биогенная миграция), или же протекает в среде, геохимические особенности которой обусловлены живым веществом, как тем, которое в настоящее время составляет биосферу, так и тем, которое существовало на Земле в течение всей геологической истории.

Закономерности

  1. Детерминированность — предопределенность, обусловленная генотипом; закономерность, в результате которой из каждой клетки образуется определенная ткань, определенный орган, что происходит под влиянием генотипа и факторов внешней среды, в том числе и соседних клеток (индукция при формировании зародыша).
  2. Единство живого вещества — неразрывная молекулярно-биохимическая совокупность живого вещества (биомассы), системное целое с характерными для каждой геологической эпохи чертами. Уничтожение видов нарушает природное равновесие, что приводит к резкому изменению молекулярно-биохимических свойств живого вещества и невозможности существования многих ныне процветающих видов, в том числе и человека.
  3. Закономерность географического распределения центров происхождения культурных растений (Н.И.Вавилов) — сосредоточение очагов формообразования культурных растений в тех районах земного шара, где наблюдается наибольшее их генетическое разнообразие.
  4. Закономерность экологической пирамиды — соотношение между продуцентами, консументами и редуцентами, выраженное в их массе и изображенное в виде графической модели, где каждый последующий пищевой уровень составляет 10% от предыдущего.
  5. Зональность — закономерное расположение на земном шаре природных зон, отличающихся климатом, растительностью, почвами и животным миром. Зоны бывают широтные (географические) и вертикальные (в горах).
  6. Изменчивость — способность организмов изменять свои признаки и свойства; генотипическая изменчивость наследуется, фенотипическая — не наследуется.
  7. Метамерность — повторение однотипных участков тела или органа; у животных — членистое тело червей, личинок моллюсков и членистоногих, грудная клетка позвоночных; у растений — узлы и междоузлия стебля.
  8. Наследственность — способность организмов передавать следующему поколению свои признаки и свойства, т. е. воспроизводить себе подобных.
  9. Полярность — противоположность концов тела: у животных — передний (головной) и задний (хвостовой), у растений — верхний (гелиотропический) и нижний (геотропический).
  10. Приспособленность — относительная целесообразность строения и функций организма, явившаяся результатом естественного отбора, устраняющего неприспособленных к данным условиям существования.
  11. Симметрия — закономерное, правильное расположение частей тела относительно центра — радиальная симметрия (некоторые беспозвоночные животные, осевые органы растений, правильные цветки) либо относительно прямой линии (оси) или плоскости — двусторонняя симметрия (часть беспозвоночных и все позвоночные животные, у растений — листья и неправильные цветки).
  12. Цикличность — повторение определенных периодов жизни; сезонная цикличность, суточная цикличность, жизненная цикличность (период от рождения до смерти). Цикличность в чередовании ядерных фаз — диплоидной и гаплоидной.

Термодинамика живых систем

Все сказанное указывает на важную роль энтропии в биосистемах. Однако нужно отметить, что эта термодинамическая функция имеет несколько смысловых значений и не все они в равной мере приложимы к живым организмам. Рассмотрим их последовательно.

Энтропия как мера рассеяния энергии при необратимых процессах. В этом аспекте данная функция полностью приложима к биосистемам. Чем больше возрастание энтропии при каком-либо процессе, тем больше рассеяние энергии и тем более необратим данный процесс.

Энтропия как мера возможности процесса. В этом качестве энтропия выполняет важную роль, и приговор ее непререкаем. Самопроизвольно могут протекать только такие процессы, при которых эта функция или увеличивается (необратимые), или остается постоянной (обратимые). Процессы, при которых энтропия уменьшается, самопроизвольно протекать не могут, то есть термодинамически невозможны. Эта роль энтропии полностью приложима и к биологическим системам. Термодинамический энтропийный критерий и здесь однозначно определяет возможность протекания того или иного процесса. В этой связи утверждение, которое иногда приходится слышать, что ферменты делают возможными реакции, которые в данных условиях при их отсутствии невозможны, следует признать неверным. Ферменты лишь ускоряют во много раз те реакции, которые и без их участия могут протекать, но с очень низкой скоростью.

Однако, говоря о роли энтропии как меры возможности процесса, необходимо отметить, что «мудрость живых систем» проявляется и здесь. Энергетический обмен у них организован таким образом, что они могут обходить энтропийный термодинамический критерий и в них протекают не только возможные, но и невозможные с термодинамической точки зрения реакции. Это все реакции, при которых энтропия уменьшается, а свободная энергия увеличивается, — биосинтез различных веществ, работа систем активного транспорта и т.д. Каким образом это удается делать биологическим объектам? Это оказывается возможным благодаря механизму так называемого энергетического сопряжения. Суть этого сопряжения состоит в том, что возможная с точки зрения энтропийного критерия реакция сопрягается с реакцией термодинамически невозможной и дает для нее энергию (рис. 3). Два условия необходимы для осуществления энергетического сопряжения: 1) свободная энергия, даваемая термодинамически возможной реакцией, должна превышать энергию, потребляемую реакцией термодинамически невозможной, то есть должен быть некоторый избыток энергии с учетом вероятных потерь при ее передаче; 2) обе сопрягаемые реакции должны иметь общий компонент. Такими компонентами в биологических системах могут быть фосфат, электрохимический градиент протона и др.

Энергетическое сопряжение в биосистемах — это выдающееся изобретение природы. Оно осуществляется обычно при участии структурных элементов клетки. Наиболее ярким примером такого сопряжения являются процессы окислительного и фотосинтетического фосфорилирования, протекающие при участии соответственно сопрягающих митохондриальных и фотосинтетических мембран. Как известно, в ходе этих процессов за счет энергии переноса электронов по дыхательной или фотосинтетической цепи осуществляется синтез богатых энергией молекул АТФ (фосфорилирование АДФ), используемых для совершения самой разнообразной работы.

Энтропия как мера упорядоченности системы. Мы уже говорили, что энтропия отражает ту часть энергии системы, которая деградировала, то есть равномерно рассеялась в виде тепла. Таким образом, чем меньше порядка в системе, то есть чем меньше градиенты энергии, тем больше ее энтропия.

Особенно четко связь энтропии с упорядоченностью системы проявляется в формуле Планка-Больцмана, которая связывает энтропию с термодинамической вероятностью:

S = k ln W,

где S — энтропия, k — постоянная Больцмана, равная 1,38 » 10- 23 Дж » К-1, или 3,31 » 10- 24 энтропийных единиц (1 энтропийная единица равна 1 кал » град-1), и W — термодинамическая вероятность, то есть число способов, которыми достигается данное состояние. Она всегда больше единицы. В общем виде она равна:

где (если речь идет о молекулах) N — общее число молекул, Ni — число молекул в i-м фазовом объеме.

Допустим, у нас есть система, состоящая из трех отсеков. В системе находятся девять молекул. Полный беспорядок в такой системе будет тогда, когда молекулы распределены равномерно, то есть в каждом отсеке будет по три молекулы (рис. 4). Термодинамическая вероятность такой системы равна:

Полный порядок в системе наблюдается при нахождении всех девяти молекул в одном из трех отсеков (рис. 4). Термодинамическая вероятность такой системы будет

Таким образом, чем больше упорядоченность в данной системе, тем меньше ее термодинамическая вероятность, и, следовательно, тем меньше энтропия (см. формулу Планка-Больцмана).

В какой мере энтропия как мера упорядоченности приложима к биосистемам. Ответ на этот вопрос в определенной степени дают расчеты Л.А. Блюменфельда , который вычислил, насколько меняется энтропия при образовании организма человека из элементов, его составляющих (мономеров, полимеров, клеток). Оказалось, что упорядоченность человеческого организма можно оценить приблизительно в 300 энтропийных единиц. Много это или мало? Чтобы ответить на этот вопрос, достаточно сказать, что настолько меняется энтропия стакана воды при ее испарении. С чем связан такой парадокс? Дело в том, что энтропия оценивает только физическую, энергетическую сторону упорядоченности. Она совершенно не затрагивает качественной ее стороны. Уникальность биологической структуры состоит не в том, сколько энергии в ней содержится и насколько изменилась энтропия при ее образовании, а в том, что эта структура имеет качественные особенности, позволяющие ей выполнять вполне определенные биологические функции. Увы, энтропию это вовсе не интересует. Таким образом, использование энтропии как меры упорядоченности в применении к биосистемам лишено смысла.

ЗАКЛЮЧЕНИЕ

У М.В. Волькенштейна в его книге «Энтропия и информация» есть такие строки:

Энергия — миров царица,

Но черная за нею тень

Непререкаемо влачится,

Уравнивая ночь и день,

Всему уничтожая цену,

Все превращая в дымный мрак_

Ведь энтропия неизменно

Изображалась только так.

Но ныне понято, что тени

Не будет, не было и нет,

Что в смене звездных поколений

Лишь энтропия — жизнь и свет.

Мы не хотим включаться в спор о том, что важнее — энергия или энтропия. Будем считать свою задачу выполненной, если у читателя сложится представление о важности такой интересной термодинамической функции, как энтропия, и той роли, которую она играет в биосистемах.

Термодинамика живых систем

Состояние живых систем в любой момент времени (динамическое состояние) характерно тем, что элементы системы постоянно разрушаются и строятся заново. Этот процесс носит название биологического обновления. Для обновления элементов в живых системах требуется постоянный приток извне веществ и энергии, а также вывод во внешнюю среду тепла и продуктов распада. Это означает, что живые системы обязательно должны быть открытыми системами. Благодаря этому в них создается и поддерживается химическое и физическое неравновесие. Именно на этом неравновесии основана работоспособность живой системы, направленная на поддержание высокой упорядоченности своей структуры, а, значит, на сохранение жизни и осуществление различных жизненных функций. Кроме того, живая система, благодаря свойству открытости, достигает стационарности, т.е. постоянства своего неравновесного состояния.

В изолированной системе (такая система не обменивается с внешней средой веществом и энергией), находящейся в неравновесном состоянии, происходят необратимые процессы, которые стремятся привести систему в равновесное состояние. Переход живой системы в такое состояние означает для нее смерть.

Таким образом, открытость – одно из важнейших свойств живых систем.

Весьма важным является вопрос о применимости законов термодинамики к живым системам.

I закон (начало) термодинамики. Первый закон термодинамики гласит: изменение энергии системы (dE) равно количеству тепла (Q), полученному системой, плюс работа внешних сил (A), совершенная над системой

dE = Q + A

Для адиабатически изолированных систем (Q = 0, то есть обмена теплом с внешней средой не происходит) и замкнутых (А = 0, то есть внешние силы отсутствуют) dE = 0. Последнее утверждение является законом сохранения энергии: при всех изменениях, происходящих в адиабатически изолированных и замкнутых системах, полная энергия системы остается постоянной.

Если рассматривать термодинамическую систему, состоящую только из живой системы, то закон сохранения энергии неприменим, так как живая система является открытой. Для термодинамической системы, включающей в себя живую систему и среду, с которой система обменивается энергией и веществом, закон сохранения энергии выполняется. Действительно, как показали опыты, общее количество энергии, которое получает организм за некоторый промежуток времени, вновь обнаруживается впоследствии в виде:

а) выделяемого тепла;

б) совершаемой внешней работы или выделяемых веществ;

в) теплоты сгорания веществ, синтезированных за этот промежуток времени за счет энергии, поступившей извне.

II закон (начало) термодинамики.Второй закон термодинамики утверждает, что в изолированной термодинамической системе энтропия никогда не может уменьшаться. Она равна нулю при обратимых процессах и может только увеличиваться при необратимых процессах.

Здесь есть также определенная связь с упорядоченностью системы, а также с информацией (большая упорядоченность соответствует большему количеству информации). Можно говорить при этом о единстве природы информации и энтропии. Действительно, увеличение энтропии соответствует переходу системы из более упорядоченного в менее упорядоченное состояние. Такой переход сопровождается уменьшением информации, содержащейся в структуре системы. Беспорядок, неопределенность можно трактовать как недостаток информации. В свою очередь возрастание количества информации уменьшает неопределенность.

Вспомним физический смысл энтропии. Все процессы, самопроизвольно протекающие в природе, необратимы и способствуют переходу системы в равновесное состояние, которое всегда характеризуется тем, что:

а) в процессе этого перехода всегда безвозвратно выделяется некоторая энергия, и для совершения полезной работы она использована быть не может;

б) в равновесном состоянии элементы системы характеризуются наименьшей упорядочен-ностью.

Отсюда следует, что энтропия является как мерой рассеяния энергии, так и мерой неупорядоченности системы.

Применение второго закона термодинамики к живым системам без учета того, что это открытые системы, приводит к противоречию. Действительно, энтропия должна всегда возрастать, то есть должна расти неупорядоченность живой системы. В то же время мы хорошо знаем, что все живые системы постоянно создают из беспорядка упорядоченность. В них создается и поддерживается физическое и химическое неравновесие, на котором основана работоспособность живых систем. В процессе развития каждого организма (онтогенеза), так же как и в процессе эволюционного развития (филогенеза), все время образуются новые структуры, и достигается состояние с более высокой упорядоченностью. А это означает, что энтропия (неупорядоченность) живой системы не должна возрастать. Таким образом, второй закон термодинамики, справед-ливый для изолированных систем, для живых систем, являющихся открытыми, неприменим.

В течение времени жизни живой системы ее элементы постоянно подвергаются распаду. Энтропия этих процессов положительна (возникает неупорядоченность).

Для компенсации распада (компенсации неупорядоченности) должна совершаться внутренняя работа в форме процессов синтеза элементов взамен распавшихся. А это означает, что эта внутренняя работа является процессом с отрицательной энтропией (такие процессы называют негэнтропийными, а отрицательную энтропию – негэнтропией). Негэйнтропийный процесс проти-водействует увеличению энтропии системы, которое связано с процессом распада, и создает упорядоченность.

Источником энергии для совершения негэнтропийной внутренней работы являются:

Для организмов – гетеротрофов (питающихся только органической пищей) – энергия в виде химических связей и низкая энтропия поглощаемых высокоструктурированных органических веществ. В этом случае поглощаемые пищевые вещества обладают большей упорядоченностью (меньшей энтропией), чем выделяемые продукты обмена. Организмы гетеротрофы переносят упорядоченность (негэнтропию) из питательных веществ в самих себя.

Для организмов – автотрофов (самостоятельно синтезирующих для себя питательные веще-ства из неорганических соединений с участием солнечного излучения) – энергия солнечного света, представляющего электромагнитное излучение с низкой энтропией.

Таким образом, обмен веществ с точки зрения термодинамики необходим для противодей-ствия увеличению энтропии, обусловленному необратимыми процессами в живой системе.

Если рассматривать систему «живой организм плюс среда», из которой берутся питательные вещества и в которую отдаются продукты обмена, то второй закон термодинамики справедлив: энтропия этой системы возрастает и никогда не уменьшается. Это означает, что живая система создает внутри себя упорядоченность за счет того, что она уменьшает упорядоченность в окружающей среде.

Итак, живая система является открытой системой, и ее энтропия не возрастает, как это имеет место в изолированной системе. Это означает, что живая система постоянно совершает работу, направленную на поддержание своей упорядоченности, и находится в неравновесном стационарном состоянии. Производство энтропии при этом минимально.

Таким образом, с позиций термодинамики можно утверждать, что живым системам присущи процессы, уменьшающие энтропию систем и, следовательно, поддерживающие их организованность.

Следующий вопрос заключается в том, как реализуются процессы самоуправления и самоорганизации живых систем. Этот вопрос, прежде всего, связан с рассмотрением жизни как информационного процесса. Недаром кибернетика определена ее создателем Н. Винером как «наука об управлении и передачи информации в живых организмах и машинах».

Дата добавления: 2015-08-29; просмотров: 1184. Нарушение авторских прав

Рекомендуемые страницы:

| следующая лекция ==>
РОЛЬ ЭНТРОПИИ В БИОСИСТЕМАХ |

Studopedia.info — Студопедия — 2014-2019 год . (0.004 сек.) русская версия | украинская версия

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *